ارزیابی برخی خواص فیزیکی فیلم نانو بیوکامپوزیت بر پایه ایزوله پروتئین آب پنیر و پلی دکستروز حاوی نانوفیبرسلولز و لاکتوباسیلوس پلانتاروم و اثر آن بر ماندگاری گوشت گاو

نویسندگان
1 دانشجوی دکتری تخصصی، گروه علوم و صنایع غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
2 دانشیار گروه مهندسی علوم و صنایع غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران.
3 دانشیار گروه مهندسی علوم و صنایع غذایی، دانشگاه ارومیه، ارومیه، ایران.
چکیده
در حال حاضر تمایل بالایی به استفاده از سیستم­ های بسته­ بندی فعال زیستی به ­دلیل پتانسیل بالای آن­ها برای بهبود ماندگاری محصولات­ غذایی و ارائه مزایای سلامتی­ بخش برای مصرف­ کنندگان وجود دارد. در همین راستا، با هدف تولید فیلم پروبیوتیک نانوبیوکامپوزیت برپایه ایزوله پروتئین آب­ پنیر-پلی­ دکستروز حاوی نانوفیبرسلولز و باکتری لاکتوباسیلوس پلانتاروم و بررسی اثر ضدمیکروبی فیلم بر ماندگاری گوشت گاو، از غلظت­های مختلف پلی­ دکستروز (0، 10 و 20 درصد وزنی/وزنی ایزوله پروتئین آب­ پنیر) و نانوفیبرسلولز (0، 2/5 و 5 درصد وزنی/وزنی ایزوله پروتئین آب­ پنیر) جهت آماده ­سازی فیلم استفاده گردید. اثر متغیرهای مورد نظر بر روی خواص فیزیکی فیلم (ضخامت، جذب رطوبت، زاویه تماس، رنگ) و اثر ضدمیکروبی فیلم بهینه بر افزایش ماندگاری گوشت گاو در مدت زمان نگهداری 8 روز در دمای 4 درجه سلسیوس مورد بررسی قرار گرفت. نتایج نشانگر سازگاری مطلوب بین ماتریس پروتئین آب­ پنیر، نانوفیبرسلولز و پلی­ دکستروز بود. استفاده از پلی­ دکستروز و نانوفیبرسلولز اثر معنی­داری در افزایش ضخامت، زاویه تماس و تغییرات رنگی فیلم داشت و موجب کاهش جذب رطوبت فیلم گردید. همچنین نتایج پوشش­ دهی نمونه­ های گوشت با فیلم بهینه نیز نشانگر کاهش قابل توجه در میزان رشد باکتری­ های مزوفیل هوازی، سرماگراها و کلی­فرم­ ها در طی مدت زمان نگهداری در دمای 4 درجه سلسیوس بود. در نهایت نتایج به­ دست آمده نشان داد، کاربرد نانوفیبرسلولز و پلی­ دکستروز در کنار باکتری پروبیوتیک لاکتوباسیلوس پلانتاروم در فیلم تولید شده از ایزوله پروتئین آب­ پنیر با ایجاد یک بسته­ بندی غذایی زیست فعال در مقایسه با نمونه گوشت بدون پوشش می­ تواند باعث بهبود ماندگاری گوشت گاو گردد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating of some physical properties of whey protein isolate – polydextrose based nanobiocomposite film containing cellulose nanofiber and Lactobacillus plantarum and its effect on beef shelf-life

نویسندگان English

naser karimi 1
Ainaz Alizadeh 2
Hadi almasi 3
Shahram Hanifian 2
1 Islamic Azad University, Tabriz Branch
2 Islamic Azad University, Tabriz Branch
3 Urmia University
چکیده English

There is a growing interest in bioactive packaging systems due to their potential for the extended shelf life of food products. In this way, to produce probiotic nanocomposite whey protein isolate-polydextrose film containing cellulose nanofiber and Lactobacillus plantarum probiotic bacteria and evaluation of its antimicrobial effect on beef shelf life during storage time, different concentrations of polydextrose (0, 10 and 20 wt / wt% whey protein isolate) and cellulose nanofiber (0, 2.5 and 5 wt / wt% whey protein isolate) were used for film preparation. Effect of variables on physical properties of the film (thickness, moisture absorption, water contact angle, and color properties) and effect of optimal film antimicrobial properties on enhancing the beef shelf-life during 8-day storage time in refrigerated conditions was examined. The results showed compatibility between the protein matrix of whey protein isolate, cellulose nanofiber and polydextrose. The use of polydextrose and cellulose nanofiber had a significant effect on increasing the film thickness, water contact angle, color changes and decreased the moisture absorption of the film. The results of covering the meat samples with the optimum film indicated a significant decrease in the growth of aerobic mesophilic bacteria, psychrotrophic and coliform bacteria during storage time. Finally, the results showed that the application of cellulose nanofiber and polydextrose in the film produced from whey protein isolate could improve the shelf-life of beef compared to the uncovered meat sample by creating a bioactive food packaging.

کلیدواژه‌ها English

Bioactive packaging
Cellulose Nanofiber
Lactobacillus plantarum
Polydextrose
Whey Protein Isolate
1. Fathi, N., Almasi, H., & Pirouzifard, M. K. (2018). Effect of ultraviolet radiation on morphological and physicochemical properties of sesame protein isolate based edible films. Food Hydrocoll. 85:136–143.
2. Amjadi, S., Emaminia, S., Heyat Davudian, S., Pourmohammad, S., Hamishehkar, H., & Roufegarinejad, L. (2019). Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles. Carbohydr Polymer. 216:376–384.
3. Azevedo, V. M., Dias, M. V., Borges, S. V., Costa, A. L. R., Silva, E. K., Medeiros, É. A. A., & Soares, N. de F. F. (2015). Development of whey protein isolate bio-nanocomposites: Effect of montmorillonite and citric acid on structural, thermal, morphological and mechanical properties. Food Hydrocoll. 48:179–188.
4. Oymaci, P., & Altinkaya, S. A. (2016). Improvement of barrier and mechanical properties of whey protein isolate based food packaging films by incorporation of zein nanoparticles as a novel bionanocomposite. Food Hydrocoll. 54:1–9.
5. Ghanbari, A., Tabarsa, T., Ashori, A., Shakeri, A., & Mashkour, M. (2018). Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. Int J Biol Macromol. 112:442–447.
6. Kassab, Z., Aziz, F., Hannache, H., Ben Youcef, H., & El Achaby, M .(2019). Improved mechanical properties of k-carrageenan-based nanocomposite films reinforced with cellulose nanocrystals. Int J Biol Macromol. 123:1248–1256.
7. Niu, X., Liu, Y., Song, Y., Han, J., & Pan, H. (2018). Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid /chitosan composite film for food packaging. Carbohydr Polym. 183:102–109.
8. Shabanpour, B., Kazemi, M., Ojagh, S. M., & Pourashouri, P. (2018). Bacterial cellulose nanofibers as reinforce in edible fish myofibrillar protein nanocomposite films. Int J Biol Macromol. 117:742–751.
9. Tibolla, H., Pelissari, F. M., Martins, J. T., Lanzoni, E. M., Vicente, A. A., Menegalli, F. C., & Cunha, R. L. (2019). Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment. Carbohydr Polym .207:169–179.
10. Soukoulis, C., Singh, P., Macnaughtan, W., Parmenter, C., & Fisk, I. D. (2016). Compositional and physicochemical factors governing the viability of Lactobacillus rhamnosus GG embedded in starch-protein based edible films. Food Hydrocoll. 52: 876–887.
11. Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., & Fisk, I. D. (2014). Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chem. 159:302–308.
12. Espitia, P. J. P., Batista, R. A., Azeredo, H. M. C., & Otoni, C. G. (2016). Probiotics and their potential applications in active edible films and coatings. Food Res Int. 90:42–52.
13. Piermaria, J., Diosma, G., Aquino, C., Garrote, G., & Abraham, A. (2015). Edible kefiran films as vehicle for probiotic mi.croorganisms. Innov Food Sci Emerg Technol. 32:193–199.
14. Pavli, F., Tassou ,C., Nychas, G. J. E., & Chorianopoulos, N. (2018). Probiotic incorporation in edible films and coatings: Bioactive solution for functional foods. Int J Mol Sci. 19:1–17.
15. Bambace, M. F., Alvarez, M. V., & Moreira, M. D. R. (2019). Novel functional blueberries: Fructo-oligosaccharides and probiotic lactobacilli incorporated into alginate edible coatings. Food Res Int. 122:653–660.
16. Ebrahimi, B., Mohammadi, R., Rouhi, M., Mortazavian, A. M., Shojaee-Aliabadi, S., & Koushki, M. R. (2018). Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT - Food Sci Technol. 87:54–60.
17. Odila Pereira, J., Soares, J., Sousa, S., Madureira, A. R., Gomes, A., & Pintado, M. (2016). Edible films as carrier for lactic acid bacteria. LWT - Food Sci Technol. 73: 543-550.
18. Da Costa, W. K. A., Brandão, L. R., Martino, M. E, et al .(2018). Qualification of tropical fruit-derived Lactobacillus plantarum strains as potential probiotics acting on blood glucose and total cholesterol levels in Wistar rats. Food Res Int. 1-39.
19. Kazemalilou, S., & Alizadeh, A. (2017). Optimization of sugar replacement with date syrup in prebiotic chocolate milk using response surface methodology. Korean J Food Sci Anim Resour. 37:449–455.
20. Alizadeh, A., Oskuyi, A. S., Amjadi, S. (2019). The optimization of prebiotic sucrose-free mango nectar by response surface methodology: The effect of stevia and inulin on physicochemical and rheological properties. Food Sci Technol Int. 25:243–251.
21. Silva, E. K., Zabot, G. L., Cazarin, C. B. B., Maróstica, M. R., & Meireles, M. A. A. (2016). Biopolymer-prebiotic carbohydrate blends and their effects on the retention of bioactive compounds and maintenance of antioxidant activity. Carbohydr Polym. 144:149–158.
22. Karami Moghadam, A., & Emam Djomeh, Z. (2017). Antimicrobial activity of caseinate – based edible film incorporated with pomegranate peel extract on minced meat. J Food Sci Technol. 62:323–330.
23. Karimi, N., Alizadeh, A., Almasi, H., & Hanifian, S. (2019). Preparation and characterization of whey protein isolate/polydextrose-basednanocomposite film incorporated with cellulose nanofiber and L. plantarum: A newprobiotic active packaging system. Food Science and Technology. 1-41.
24. Ghadetaj, A., Almas,i H., & Mehryar, L. (2018). Development and characterization of whey protein isolate active films containing nanoemulsions of Grammosciadium ptrocarpum Bioss. essential oil. Food Packag Shelf Life. 16:31–40.
25. Amjadi, S., Emaminia, S., Nazari, M., Davudian, S. H., Roufegarinejad, L., & Hamishehkar, H. (2019). Application of Reinforced ZnO Nanoparticle-Incorporated Gelatin Bionanocomposite Film with Chitosan Nanofiber for Packaging of Chicken Fillet and Cheese as Food Models. Food Bioprocess Technol. 12:1205–1219.
26. Alizadeh Sani, M., Ehsani, A., & Hashemi, M. (2017). Whey protein isolate/cellulose nanofibre/TiO2 nanoparticle/rosemary essential oil nanocomposite film: Its effect on microbial and sensory quality of lamb meat and growth of common foodborne pathogenic bacteria during refrigeration. Int J Food Microbiol. 251:8–14.
27. Azeredo, H. M. C., Mattoso, L. H. C., Wood, D., Williams, T. G., Avena-Bustils, R. J., & McHugh, T. H. (2009). Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J Food Sci. 74:31–35
28. Amankwaah, C. (2013). Incorporation of selected plant extracts into edible chitosan films and the effect on the antiviral, antibacterial and mechanical properties of the material. Ohio State University. Pp:148.
29. Soni, B., Hassan, E. B., Schilling, M. W., & Mahmoud, B. (2016). Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Carbohydr Polym. 151:779–789.
30. Baradaran Safa, M. R., & Almasi, H. (2016). Investigation of the physical and antimicrobial properties of sodium alginate – agar based bionanocomposite film containing nanosilver and cellulose nanofiber. J Food Res. 26:601–613.
31. Hasheminya, S. M., Rezaei Mokarram, R., Ghanbarzadeh, B., Hamishekar, H., & Kafil, H. S. (2018). Physicochemical, mechanical, optical, microstructural and antimicrobial properties of novel kefiran-carboxymethyl cellulose biocomposite films as influenced by copper oxide nanoparticles (CuONPs). Food Packag Shelf Life. 17:196–204.
32. Jahed, E., Khaledabad, M. A., Bari, M. R., & Almasi, H. (2017). Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oil-loaded chitosan films. React Funct Polym. 117:70–80.
33. Tapia, M., Rojas-Grau, M. A., Rodrigguez, F. J., Ramirez, J., Carmona, A., & Martin-Belloso, O. (2007). Alginate- and Gellan-Based Edible Films for Probiotic Coatings on Fresh-Cut Fruits. Journal of Food Science. 72:190–196.
34. López De Lacey, A. M., López-Caballero, M. E., Gómez-Estaca, J., Gómez-Guillén, M. C., & Montero, P. (2012). Functionality of Lactobacillus acidophilus and Bifidobacterium bifidum incorporated to edible coatings and films. Innov Food Sci Emerg Technol. 16:277–282.
35. Gialamas, H., Zinoviadou, K. G., Biliaderis, C. G., & Koutsoumanis, K. P. (2010). Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. FRIN. 43:2402–2408.