1. Inta, A., Trisonthi, P., and Trisonthi, C. 2013. Analysis of traditional knowledge in medicinal plants used by Yuan in Thailand. Journal of Ethnopharmacology, 149(1): 344-351.
2. Hosseinpour Azad, N., Nematzadeh, G.A., Azadbakht, M., Kazemitabar, S., and Shokri, E. 2012. Investigation on fatty acids profile in two ecotypes of Iranian Echium amoenum Fisch & Mey. Iranian journal of medicinal and aromatic plants, 27(4): 587-595.
3. Chua, K. and Chou, S. 2003. Low-cost drying methods for developing countries. Trends in Food Science & Technology, 14(12): 519-528.
4. Doymaz, I. and Pala, M. 2003. The thin-layer drying characteristics of corn. Journal of Food Engineering, 60(2): 125-130.
5. Pangavhane, D.R., Sawhney, R.L., and Sarsavadia, P.N. 2002. Design, development and performance testing of a new natural convection solar dryer. Energy, 27(6): 579-590.
6. Lakshmi, D.V.N., Muthukumar, P., Layek, A., and Nayak, P.K. 2019. Performance analyses of mixed mode forced convection solar dryer for drying of stevia leaves. Solar Energy, 188: 507-518.
7. Essalhi, H., Benchrifa, M., Tadili, R., and Bargach, M.N. 2018. Experimental and theoretical analysis of drying grapes under an indirect solar dryer and in open sun. Innovative Food Science & Emerging Technologies, 49: 58-64.
8. Lewicki, P.P. 2006. Design of hot air drying for better foods. Trends in Food Science & Technology, 17(4): 153-163.
9. Pan, Z. and Atungulu, G.G., Infrared heating for food and agricultural processing. 2010: CRC Press.
10. Łechtańska, J.M., Szadzińska, J., and Kowalski, S.J. 2015. Microwave- and infrared-assisted convective drying of green pepper: Quality and energy considerations. Chemical Engineering and Processing: Process Intensification, 98: 155-164.
11. Sui, Y., Yang, J., Ye, Q., Li, H., and Wang, H. 2014. Infrared, convective, and sequential infrared and convective drying of wine grape pomace. Drying Technology, 32(6): 686-694.
12. Ziaforoughi, A. and Esfahani, J.A. 2016. A salient reduction of energy consumption and drying time in a novel PV-solar collector-assisted intermittent infrared dryer. Solar Energy, 136: 428-436.
13. Aktaş, M., Şevik, S., Amini, A., and Khanlari, A. 2016. Analysis of drying of melon in a solar-heat recovery assisted infrared dryer. Solar Energy, 137: 500-515.
14. Şevik, S., Aktaş, M., Dolgun, E.C., Arslan, E., and Tuncer, A.D. 2019. Performance analysis of solar and solar-infrared dryer of mint and apple slices using energy-exergy methodology. Solar Energy, 180: 537-549.
15. Duffie, J.A. and Beckman, W.A., Solar engineering of thermal processes. 2013: John Wiley & Sons. 346.
16. Farahnaky, A. and Afshari Jouybari, H., Evaluation of the potential of Photoshop software for colorimetry of foods and its comparison with Hunter colorimeter, case study: color changes of Mazafati rutabs during accelerated ripening in 18th National Congress on Food Technology2008: Mashhad. p. 1-7.
17. Balbay, A., Kaya, Y., and Sahin, O. 2012. Drying of black cumin (Nigella sativa) in a microwave assisted drying system and modeling using extreme learning machine. Energy, 44(1): 352-357.
18. Karathanos, V.T. 1999. Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering, 39(4): 337-344.
19. Aghbashlo, M., Kianmehr, M.H., and Samimi‐Akhijahani, H. 2009. Evaluation of thin‐layer drying models for describing drying kinetics of barberries (Barberries vulgaris). Journal of food process engineering, 32(2): 278-293.
20. Henderson, S. 1974. Progress in developing the thin layer drying equation. Transactions of the ASAE, 17(6): 1167-1168.
21. Agrawal, Y.C. and Singh, R.P. 1978. Thin-layer drying studies on short-grain rough rice. Paper-American Society of Agricultural Engineers.
22. Verma, L.R., Bucklin, R., Endan, J., and Wratten, F. 1985. Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28(1): 296-0301.
23. Dorouzi, M., Mortezapour, H., Akhavan, H.-R., and Moghaddam, A.G. 2018. Tomato slices drying in a liquid desiccant-assisted solar dryer coupled with a photovoltaic-thermal regeneration system. Solar Energy, 162: 364-371.
24. Gazor, H.R. and Minaei, S. 2008. Influence of temperature and air velocity on the canola drying process and its quality. Journal of Agricultural Engineering Research, 9(1): 109-124.
25. Salehi, F., Kashaninejad, M., Sadeghi Mahoonak, A., and Ziaiifar, A.M. 2017. Kinetics modeling of thin-layer drying of button mushroom in combined infrared-hot air dryer. Food Science and Technology, 13(61): 87-97.
26. Rekabi, M., Abasspour-Fard, M.H., and Mortezapour, H. 2017. Energy Consumption and Pistachio Drying Time in a Hybrid Solar-Infrared Drier. Journal of Agricultural Engineering, 39(2): 17-32.
27. Beigi, M. 2018. Effect of infrared drying power on dehydration characteristics, energy consumption, and quality attributes of common wormwood (Artemisia absinthium L.) leaves. Journal of Agricultural Science and Technology, 20(4): 709-718.
28. Mortezapour, H., Ghobadian, B., Minaei, S., and Khoshtaghaza, M.H. 2012. Saffron drying with a heat pump–assisted hybrid photovoltaic–thermal solar dryer. Drying Technology, 30(6): 560-566.
29. Hebbar, H.U., Vishwanathan, K., and Ramesh, M. 2004. Development of combined infrared and hot air dryer for vegetables. Journal of food engineering, 65(4): 557-563.
30. Motevali, A., Minaei, S., and Khoshtagaza, M.H. 2011. Evaluation of energy consumption in different drying methods. Energy Conversion and Management, 52(2): 1192-1199.
31. Motevali, A., Jafari, H., and Hashemi, S.J. 2018. Effect of IR intensity and air temperature on exergy and energy at hybrid infrared-hot air dryer. Chem Ind Chem Eng Q, 24(1): 31-42.
32. Mehran, S., Nikian, M., Ghazi, M., Zareiforoush, H., and Bagheri, I. 2019. Experimental investigation and energy analysis of a solar-assisted fluidized-bed dryer including solar water heater and solar-powered infrared lamp for paddy grains drying. Solar Energy, 190: 167-184.
33. Jafari, H., Kalantari, D., and Azadbakht, M. 2018. Energy consumption and qualitative evaluation of a continuous band microwave dryer for rice paddy drying. Energy, 142: 647-654.
34. Nadi, F. and Abdanan, S. 2017. An investigation into the effect of drying conditions on kinetic drying of medicinal plant of Echium amoenum. Int Med J. 24: 87-91.
35. Gunhan, T., Demir, V., Hancioglu, E., and Hepbasli, A. 2005. Mathematical modelling of drying of bay leaves. Energy Conversion and Management, 46(11): 1667-1679.
36. Akpinar, E.K. and Bicer, Y. 2005. Modelling of the drying of eggplants in thin‐layers. International journal of food science & technology, 40(3): 273-281.
37. Yousefi, A.R., Ghasemian, N., and Salari, A. 2017. Infrared drying kinetics study of lime slices using hybrid GMDH-neural networks. Innovative Food Technologies, 5(1): 91-105.
38. Kumar, N., Sarkar, B., and Sharma, H. 2012. Mathematical modelling of thin layer hot air drying of carrot pomace. Journal of food science and technology, 49(1): 33-41.