ویژگی‌های خرمالو خشک شده با استفاده از خشک‌کن فروسرخ و مدل‌سازی فرآیند به روش الگوریتم ژنتیک- شبکه عصبی مصنوعی

نویسندگان
1 کارشناسی ارشد گروه علوم و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاداسلامی، تهران، ایران
2 استادیار گروه علوم و مهندسی صنایع غذایی، واحد آزادشهر، دانشگاه آزاداسلامی، آزادشهر، ایران
3 استادیار گروه علوم و صنایع غذایی، واحد علوم و تحقیقات، دانشگاه آزاداسلامی، تهران، ایران
چکیده
خشک کردن یکی از روش‌های نگهداری میوه خرمالو می‌باشد. در این پژوهش جهت افزایش زمان ماندگاری خرمالو و تولید محصولی با کیفیت بالا، از خشک‌کن فروسرخ استفاده و سینتیک انتقال جرم، دانسیته، آبگیری مجدد و رنگ نمونه‌ها اندازه‌گیری شد. نتایج نشان‌داد که توان لامپ پرتودهی و فاصله لامپ از نمونه تأثیر معنی‏داری بر سینتیک افت رطوبت و زمان خشک کردن دارند (05/0P<). با افزایش توان پرتودهی و همچنین کاهش فاصله نمونه‌ها از منبع پرتودهی، زمان خشک کردن کاهش یافت. میانگین چگالی و آبگیری مجدد برای نمونه‌های خشک‌شده در ساملنه فروسرخ به ترتیب برابر kg/m3 639؛ و 270 درصد به دست آمد. میانگین تغییرات رنگ (ΔE) محاسبه‌شده برای توان‌های 200، 300 و 400 وات به ترتیب برابر با 43/14، 09/10 و 04/20 به دست آمد. نتایج مدل‌سازی به روش الگوریتم ژنتیک - شبکه عصبی مصنوعی نشان‌داد که ترکیب شبکه عصبی مصنوعی با الگوریتم ژنتیک نتیجه بهتری ارائه می‌کند و با ترکیب آن‌ها سرعت تحلیل و دقت فرآیند مدل‌سازی افزایش می‌یابد. با استفاده از شبکه‌ای با تعداد 15 نرون در یک لایه پنهان و با استفاده از تابع فعال‌سازی تانژانت هیپربولیک و درصد داده‌های مورد استفاده برای تربیت/ آزمون / ارزیابی برابر 20/20/60 می‌توان به خوبی سینتیک خشک کردن خرمالو را پیشگویی نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Characterization of Dried Persimmon using Infrared Dryer and Process Modeling using Genetic Algorithm-Artificial Neural Network Method

نویسندگان English

Mitra Fadaie 1
Seyyed Hossein Hosseini Ghaboos 2
Babak Beheshti 3
1 Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran , Iran.
2 Assistant Professor, Department of Food Science and Engineering, Azadshahr Branch, Islamic Azad University, Azadshahr , Iran
3 Assistant Professor, Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran , Iran.
چکیده English

Drying is one of the ways of storing of persimmon. In this study, to increasing shelf life of persimmon and producing high-quality products, infrared dryer was used and mass transfer kinetics, density, rehydration and color of samples were measured. The results showed that radiation lamp power and distance of lamp from sample had significant effect on the moisture loss kinetics and drying time (P<0.05). With increasing in radiation power, as well as reducing the distance of samples from the source of radiation, drying time decreased. The average density and rehydration for the dried samples in infrared were 639 kg /m3 and 270 %, respectively. The average calculated color changes (ΔE) for the power of 200, 300 and 400 w were 14.43, 10.09 and 20.04, respectively. The results of modeling by genetic algorithm-artificial neural network showed that artificial neural network combined with genetic algorithm provides better results and with combine them the speed of analysis and accuracy of modeling process increases. Using a network with 15 neurons in the hidden layer and using the hyperbolic tangent activation function and percentage data used to training/validation/testing equal 20/20/60 may be predicted drying kinetics of persimmon.

کلیدواژه‌ها English

Drying
genetic algorithm
Image processing
Infrared
Persimmon
[1] Mehrnia, M. A., Bashti, A., Salehi, F. 2017. Experimental and modeling investigation of mass transfer during infrared drying of Quince, Iranian Food Science and Technology Research Journal. 12, 758-766.
[2] Rastogi, N. K. 2012. Recent trends and developments in infrared heating in food processing, Critical Reviews in Food Science and Nutrition. 52, 737-760.
[3] Salehi, F., Kashaninejad, M., Jafarianlari, A. 2017. Drying kinetics and characteristics of combined infrared-vacuum drying of button mushroom slices, Heat and Mass Transfer. 53, 1751-1759.
[4] Salehi, F. 2019. Recent applications and potential of infrared dryer systems for drying various agricultural products: A review, International Journal of Fruit Science. 1-17.
[5] Sharma, G., Verma, R., Pathare, P. 2005. Mathematical modeling of infrared radiation thin layer drying of onion slices, Journal of Food Engineering. 71, 282-286.
[6] Das, I., Das, S., Bal, S. 2004. Specific energy and quality aspects of infrared (IR) dried parboiled rice, Journal of Food Engineering. 62, 9-14.
[7] Hosseini Ghaboos, S. H., Seyedain Ardabili, S. M., Kashaninejad, M., Asadi, G., Aalami, M. 2016. Changes in the physico-chemical and engineering parameters of pumpkin (C. moschata) with infrared drying method, Journal of Innovation in Food Science and Technology. 8, 93-102.
[8] Salehi, F., Kashaninejad, M., Siahmansouri, P., Moradi, E. 2017. Moisture loss kinetics of persimmon during combined hot air-infrared drying process, Journal of Food Technology and Nutrition. 14, 39-48.
[9] Karaman, S., Toker, Ö. S., Yüksel, F., Çam, M., Kayacier, A., Dogan, M. 2014. Physicochemical, bioactive, and sensory properties of persimmon-based ice cream: Technique for order preference by similarity to ideal solution to determine optimum concentration, Journal of Dairy Science. 97, 97-110.
[10] Hazbavi, E., Minaei, S. 2010. Making and investigation quality properties of dried persimmon slice, Journal of Food Science Technology. 7, 65-72.
[11] Purkayastha, M. D., Nath, A., Deka, B. C., Mahanta, C. L. 2013. Thin layer drying of tomato slices, Journal of Food Science and Technology. 50, 642-653.
[12] Bahramparvar, M., Salehi, F., Razavi, S. 2014. Predicting total acceptance of ice cream using artificial neural network, Journal of Food Processing and Preservation. 38, 1080–1088.
[13] Bahram-Parvar, M., Salehi, F., Razavi, S. M. A. 2017. Adaptive neuro-fuzzy inference system (ANFIS) simulation for predicting overall acceptability of ice cream, Engineering in Agriculture, Environment and Food. 10, 79-86.
[14] Salehi, F. 2019. Recent advances in the modeling and predicting quality parameters of fruits and vegetables during postharvest storage: a review, International Journal of Fruit Science. 1, 1-15.
[15] Ramzi, M., Kashaninejad, M., Salehi, F., Sadeghi Mahoonak, A. R., Ali Razavi, S. M. 2015. Modeling of rheological behavior of honey using genetic algorithm–artificial neural network and adaptive neuro-fuzzy inference system, Food Bioscience. 9, 60-67.
[16] Sahin, S., Sumnu, S. G.2006. Physical properties of foods, Springer Science & Business Media,
[17] Salehi, F., Kashaninejad, M. 2014. Effect of different drying methods on rheological and textural properties of balangu seed gum, Drying Technology. 32, 720-727.
[18] Hosseini Ghaboos, S. H., Seyedain Ardabili, S. M., Kashaninejad, M. 2018. Physico-chemical, textural and sensory evaluation of sponge cake supplemented with pumpkin flour, International Food Research Journal. 25, 854-860.
[19] Hosseini Ghaboos, S. H., Seyedain Ardabili, S. M., Kashaninejad, M., Asadi, G., Aalami, M. 2016. Combined infrared-vacuum drying of pumpkin slices, Journal of Food Science and Technology. 53, 2380-2388.
[20] Doymaz, I., Pala, M. 2003. The thin-layer drying characteristics of corn, Journal of Food Engineering. 60, 125-130.
[21] Movagharnejad, K., Nikzad, M. 2007. Modeling of tomato drying using artificial neural network, Computers and Electronics in Agriculture. 59, 78-85.
[22] Salehi, F., Abbasi Shahkoh, Z., Godarzi, M. 2015. Apricot osmotic drying modeling using genetic algorithm - artificial neural network, Journal of Innovation in Food Science and Technology. 7, 65-76.