[1] Sen, S,K., and Raut, S. 2015. Microbial degradation of low density polyethylene (LDPE): A review. Journal of Environmental Chemical Engineering, 3(1), 462-473.
[2] Vidal, O,L., Tsukui, A., Garrett, R., Rocha-Leão, M.H.M., Carvalho, C.W.P., Freitas, S.P., de Rezende, C.M. and Ferreira, M.S.L. 2019. Production of bioactive films of carboxymethyl cellulose enriched with green coffee oil and its residues. International journal of biological macromolecules.
[3] El Fewaty, N.H., El Sayed, A.M., and Hafez, R.S. 2016. Synthesis, structural and optical properties of tin oxide nanoparticles and its CMC/PEG–PVA nanocomposite films. Polymer Science Series A, 58(6), 1004-1016.
[4] Ballesteros, L.F., Cerqueira, M.A., Teixeira, J.A., and Mussatto, S.I. 2018. Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides. International journal of biological macromolecules, 106, 647-655.
[5] Fathi Achachlouei, B., and Zahedi, Y. 2018. Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydrate Polymers, 199, 415–425.
[6] Karimi, N., Alizadeh, A., Almasi, H., and Hanifian, S. 2019. Preparation and characterization of whey protein isolate/polydextrose-based nanocomposite film incorporated with cellulose nanofiber and L. plantarum: A new probiotic active packaging system, LWT, 108978.
[7] Niu, X., Liu, Y., Song, Y., Han, J., and Pan, H. 2018. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid/chitosan composite film for food packaging. Carbohydrate polymers, 183, 102-109.
[8] Shabanpour, B., Kazemi, M., Ojagh, S.M., and Pourashouri, P. 2018. Bacterial cellulose nanofibers as reinforce in edible fish myofibrillar protein nanocomposite films. International journal of biological macromolecules, 117, 742-751.
[9] Tibolla, H., Pelissari, F.M., Joana T., Martins, E.M., Lanzoni, A.A., Vicente, F.C., Menegalli., and Cunha, R.L. "Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment." Carbohydrate polymers, 207, 169-179.
[10] Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H.R., Shakeel, A., Ansari, A., and Niazi, S. 2016. Inulin: Properties, health benefits and food applications. Carbohydrate polymers, 147, 444-454.
[11] Cao, T., Yang, S.Y., and Song, K. 2018. Development of burdock root inulin/chitosan blend films containing oregano and thyme essential oils. International journal of molecular sciences, 19(1), 131.
[12] Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., and Fisk, I.D. 2014. Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chemistry, 159, 302-308.
[13] Ebrahimi, B., Mohammadi, R., Rouhi, M., Mortazavian, A.M., Shojaee-Aliabadi, S., and Koushki, M.R. 2018. Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT - Food Science and Technology, 87, 54–60.
[14] Fathi, N., Almasi, H., and Pirouzifard, M.K. 2018. Food Hydrocolloids E ff ect of ultraviolet radiation on morphological and physicochemical properties of sesame protein isolate based edible fi lms. Food Hydrocolloids, 85(7), 136–143.
[15] ASTM. 2005. Standard test methods for water vapor transmission of material. E96-05. Annual book of ASTM, Philadelphia, PA: American Society for Testing and Materials.
[16] ASTM International. 2012. ASTM D882-12, Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International.
[17] Amjadi, S., Emaminia, S., Davudian, S.H., Pourmohammad, S., Hamishehkar, H., and Roufegarinejad, L. 2019. Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles. Carbohydrate Polymers, 216, 376-384.
[18] Barzegar, H., Azizi, M.H., Barzegar, M. and Hamidi-Esfahani, Z. 2014. Effect of potassium sorbate on antimicrobial and physical properties of starch–clay nanocomposite films. Carbohydrate polymers, 110, 26-31.
[19] Oun, A.A., and Rhim, J.W. 2015. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydrate Polymers, 127, 101-109.
[20] Meyer, D., Bayarri, S., Tárrega, A., and Costell, E. 2011. Inulin as texture modifier in dairy products. Food Hydrocolloids, 25, 1881- 1890.
[21] Reddy, J.P., and Rhim, J.W. 2014. Characterization of bionanocomposite films pre-pared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 110, 480–488.
[22] Hasheminya, S.M., Rezaei Mokarram, R., Ghanbarzadeh, B., Hamishekar, H., and Kafil, H.S. 2018. Physicochemical, mechanical, optical, microstructural and antimicrobial properties of novel kefiran-carboxymethyl cellulose biocomposite films as influenced by copper oxide nanoparticles (CuONPs). Food Packaging and Shelf Life, 17(8), 196–204.
[23] Shabanpour, B., Kazemi, M., Ojagh, S.M., and Pourashouri, P. 2018. Bacterial cellulose nanofibers as reinforce in edible fish myofibrillar protein nanocomposite films. International Journal of Biological Macromolecules, 117, 742–751.
[24] Babaee, M., Jonoobi, M., Hamzeh, Y., and Ashori, A. 2015. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydrate polymers, 132, 1-8.
[25] Pelissari, F.M., Andrade-Mahecha, M.M., Sobral, P.J. do, A., and Menegalli, F.C. 2017. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. Journal of Colloid and Interface Science, 505, 154–167.
[26] Sahraee, S., Milani, J.M., Ghanbarzadeh, B., and Hamishehkar, H. 2017. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. International journal of biological macromolecules, 97, 373-381.
[27] Amjadi, S., Emaminia, S., Nazari, M., Davudian, S. H., and Roufegarinejad, L. 2019. Application of Reinforced ZnO Nanoparticle-Incorporated Gelatin Bionanocomposite Film with Chitosan Nanofiber for Packaging of Chicken Fillet and Cheese as Food. Journal of Food and Bioprocess Technology, 1-15.
[28] Oun, A.A., and Rhim, J.W. 2016. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers, 150, 187–200.
[29] Mandal, A., and Chakrabarty, D. 2018. Studies on mechanical, thermal, and barrier properties of carboxymethyl cellulose film highly filled with nanocellulose. Journal of Thermoplastic Composite Materials, 32(7), 995-1014.
[30] Noshirvani, N., Ghanbarzadeh, B., Mokarram, R., and Hashemi, M. 2017. Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packaging and Shelf Life, 11, 106-114.
[31] El‐Bana, M.S., Mohammed, G., El Sayed, A.M., and El‐Gamal, S. 2018. Preparation and characterization of PbO/carboxymethyl cellulose/polyvinylpyrrolidone nanocomposite films. Polymer Composites, 39(10), 3712-3725.
[32] Dai, H., Huang, Y., and Huang, H. 2018. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydrate Polymers, 185(381), 1–11.