تولید و بررسی خصوصیات فیزیکو‌شیمیایی فیلم نانوکامپوزیت بر پایه کربوکسی متیل سلولز حاوی اینولین و نانوالیاف سلولز

نویسندگان
1 گروه علوم و صنایع غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
2 دانشیار گروه علوم و صنایع غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
3 گروه مهندسی علوم و صنایع غذایی، دانشگاه ارومیه، ارومیه، ایران
4 مرکز تحقیقات کاربردی دارویی، دانشگاه علوم پزشکی تبریز، تبریز، ایران
چکیده
امروزه کاربرد پلیمر­های زیست تخریب­پذیر به علت خصوصیات مطلوب آن­ها، به ویژه در زمینه بسته­ بندی مواد غذایی بسیار مورد توجه قرار گرفته است. هدف از این مطالعه تهیه و بررسی خصوصیات فیزیکوشیمیایی فیلم نانوکامپوزیت بر پایه کربوکسی متیل سلولز حاوی اینولین و نانوالیاف سلولز بود. بدین منظور از اینولین در سه غلظت متفاوت (0، 10 و 20 درصد) و نانوالیاف سلولز در سه سطح (0، 5/2 و 5 درصد) بر اساس وزن خشک کربوکسی متیل سلولز، در تهیه نانوکامپوزیت­ها استفاده شد و ضخامت، نفوذ­پذیری نسبت به بخار آب (WVP)، زاویه تماس، خواص مکانیکی نمونه­های فیلم مورد ارزیابی قرار گرفت و آزمون میکروسکوپ الکترونی (FE-SEM) و پراش پرتو X نیز روی فیلم ها انجام شد. با افزودن اینولین و نانوالیاف سلولز WVP کاهش و زاویه تماس با آب افزایش معنی­ داری (05/0>p) یافت. خواص مکانیکی نیز با افزودن نانوالیاف سلولز بهبود یافت. در حالی که اینولین با کاهش استحکام کششی (UTS) و افزایش درصد ازدیاد طول تا نقطه شکست (ETB) تاثیر منفی بر خواص مکانیکی داشت که این اثر در فیلم­های ترکیبی با حضور هم­زمان نانوالیاف سلولز و اینولین، توسط نانوالیاف جبران شد. نتایج FE-SEM و پراش پرتو X، نشان داد، که نانوالیاف سلولز و اینولین در ماتریکس پلیمری پخش شده و در مقایسه با فیلم شاهد ساختاری متراکم ایجاد کرده و باعث حفظ بهتر ساختار بلوری شده است. با توجه به این نتایج، نانوالیاف سلولز و اینولین باعث بهبود خواص نانوکامپوزیت بر پایه کربوکسی متیل سلولز شده و فیلم حاصل می­تواند به عنوان انتخابی جدید در بسته­ بندی محصولات غذایی مورد استفاده قرار گیرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Development and characterization of Carboxymethyl cellulose based nanocomposite film containing inulin and cellulose nanofiber

نویسندگان English

Negin Zabiholahi 1
Ainaz Alizadeh 2
Hadi Almasi 3
shahram hanifian 2
Hamed Hamishekar 4
1 Department of Food Science and Technology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
2 دانشیار گروه علوم و صنایع غذایی، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
3 Department of Food Science and Technology, Urmia University, Urmia, Iran
4 Drug applied research center, TabrizUniversityof Medical Sciences, Tabriz, Iran
چکیده English

Biodegradable polymers have supplied most of common packaging materials because they present several desired features. The purpose of this study was to prepare and investigate the physicochemical properties of carboxymethyl cellulose based nanocomposite film containing inulin with three different concentrations (0, 10 and 20%) and cellulose nanofiber in three levels (0, 2.5 and 5%). Thickness, Water vapor permeability (WVP), Water contact angle, mechanical properties, field emission scanning electron microscopy (FE-SEM) and X-ray diffraction were evaluated for film samples. WVP decreased with adding cellulose nanofiber and inulin and water contact angle increased significantly (p <0.05). The mechanical properties were also improved by adding the cellulose nanofibers. Whereas inulin had a negative effect on mechanical properties by decreasing tensile strength (UTS) and increasing elongation to break (ETB), this effect of inulin was compensated by cellulose nanofiber in the composite films containing inulin and cellulose nanofiber. The FE-SEM and X-ray diffraction results showed that the cellulose nanofiber and inulin were dispersed in the polymeric matrix and formed a dense and compact structure in compared to the control film. Results showed that cellulose nanofiber and inulin improve the properties of carboxymethyl cellulose based nanocomposites and the obtained film can be used as a new choice in food packaging.

کلیدواژه‌ها English

Carboxymethyl cellulose
Cellulose Nanofiber
Inulin
Nanocomposite
Physical properties
[1] Sen, S,K., and Raut, S. 2015. Microbial degradation of low density polyethylene (LDPE): A review. Journal of Environmental Chemical Engineering, 3(1), 462-473.
[2] Vidal, O,L., Tsukui, A., Garrett, R., Rocha-Leão, M.H.M., Carvalho, C.W.P., Freitas, S.P., de Rezende, C.M. and Ferreira, M.S.L. 2019. Production of bioactive films of carboxymethyl cellulose enriched with green coffee oil and its residues. International journal of biological macromolecules.
[3] El Fewaty, N.H., El Sayed, A.M., and Hafez, R.S. 2016. Synthesis, structural and optical properties of tin oxide nanoparticles and its CMC/PEG–PVA nanocomposite films. Polymer Science Series A, 58(6), 1004-1016.
[4] Ballesteros, L.F., Cerqueira, M.A., Teixeira, J.A., and Mussatto, S.I. 2018. Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides. International journal of biological macromolecules, 106, 647-655.
[5] Fathi Achachlouei, B., and Zahedi, Y. 2018. Fabrication and characterization of CMC-based nanocomposites reinforced with sodium montmorillonite and TiO2 nanomaterials. Carbohydrate Polymers, 199, 415–425.
[6] Karimi, N., Alizadeh, A., Almasi, H., and Hanifian, S. 2019. Preparation and characterization of whey protein isolate/polydextrose-based nanocomposite film incorporated with cellulose nanofiber and L. plantarum: A new probiotic active packaging system, LWT, 108978.
[7] Niu, X., Liu, Y., Song, Y., Han, J., and Pan, H. 2018. Rosin modified cellulose nanofiber as a reinforcing and co-antimicrobial agents in polylactic acid/chitosan composite film for food packaging. Carbohydrate polymers, 183, 102-109.
[8] Shabanpour, B., Kazemi, M., Ojagh, S.M., and Pourashouri, P. 2018. Bacterial cellulose nanofibers as reinforce in edible fish myofibrillar protein nanocomposite films. International journal of biological macromolecules, 117, 742-751.
[9] Tibolla, H., Pelissari, F.M., Joana T., Martins, E.M., Lanzoni, A.A., Vicente, F.C., Menegalli., and Cunha, R.L. "Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment." Carbohydrate polymers, 207, 169-179.
[10] Shoaib, M., Shehzad, A., Omar, M., Rakha, A., Raza, H., Sharif, H.R., Shakeel, A., Ansari, A., and Niazi, S. 2016. Inulin: Properties, health benefits and food applications. Carbohydrate polymers, 147, 444-454.
[11] Cao, T., Yang, S.Y., and Song, K. 2018. Development of burdock root inulin/chitosan blend films containing oregano and thyme essential oils. International journal of molecular sciences, 19(1), 131.
[12] Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., and Fisk, I.D. 2014. Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chemistry, 159, 302-308.
[13] Ebrahimi, B., Mohammadi, R., Rouhi, M., Mortazavian, A.M., Shojaee-Aliabadi, S., and Koushki, M.R. 2018. Survival of probiotic bacteria in carboxymethyl cellulose-based edible film and assessment of quality parameters. LWT - Food Science and Technology, 87, 54–60.
[14] Fathi, N., Almasi, H., and Pirouzifard, M.K. 2018. Food Hydrocolloids E ff ect of ultraviolet radiation on morphological and physicochemical properties of sesame protein isolate based edible fi lms. Food Hydrocolloids, 85(7), 136–143.
[15] ASTM. 2005. Standard test methods for water vapor transmission of material. E96-05. Annual book of ASTM, Philadelphia, PA: American Society for Testing and Materials.
[16] ASTM International. 2012. ASTM D882-12, Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM International.
[17] Amjadi, S., Emaminia, S., Davudian, S.H., Pourmohammad, S., Hamishehkar, H., and Roufegarinejad, L. 2019. Preparation and characterization of gelatin-based nanocomposite containing chitosan nanofiber and ZnO nanoparticles. Carbohydrate Polymers, 216, 376-384.
[18] Barzegar, H., Azizi, M.H., Barzegar, M. and Hamidi-Esfahani, Z. 2014. Effect of potassium sorbate on antimicrobial and physical properties of starch–clay nanocomposite films. Carbohydrate polymers, 110, 26-31.
[19] Oun, A.A., and Rhim, J.W. 2015. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydrate Polymers, 127, 101-109.
[20] Meyer, D., Bayarri, S., Tárrega, A., and Costell, E. 2011. Inulin as texture modifier in dairy products. Food Hydrocolloids, 25, 1881- 1890.
[21] Reddy, J.P., and Rhim, J.W. 2014. Characterization of bionanocomposite films pre-pared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 110, 480–488.
[22] Hasheminya, S.M., Rezaei Mokarram, R., Ghanbarzadeh, B., Hamishekar, H., and Kafil, H.S. 2018. Physicochemical, mechanical, optical, microstructural and antimicrobial properties of novel kefiran-carboxymethyl cellulose biocomposite films as influenced by copper oxide nanoparticles (CuONPs). Food Packaging and Shelf Life, 17(8), 196–204.
[23] Shabanpour, B., Kazemi, M., Ojagh, S.M., and Pourashouri, P. 2018. Bacterial cellulose nanofibers as reinforce in edible fish myofibrillar protein nanocomposite films. International Journal of Biological Macromolecules, 117, 742–751.
[24] Babaee, M., Jonoobi, M., Hamzeh, Y., and Ashori, A. 2015. Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydrate polymers, 132, 1-8.
[25] Pelissari, F.M., Andrade-Mahecha, M.M., Sobral, P.J. do, A., and Menegalli, F.C. 2017. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. Journal of Colloid and Interface Science, 505, 154–167.
[26] Sahraee, S., Milani, J.M., Ghanbarzadeh, B., and Hamishehkar, H. 2017. Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. International journal of biological macromolecules, 97, 373-381.
[27] Amjadi, S., Emaminia, S., Nazari, M., Davudian, S. H., and Roufegarinejad, L. 2019. Application of Reinforced ZnO Nanoparticle-Incorporated Gelatin Bionanocomposite Film with Chitosan Nanofiber for Packaging of Chicken Fillet and Cheese as Food. Journal of Food and Bioprocess Technology, 1-15.
[28] Oun, A.A., and Rhim, J.W. 2016. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers, 150, 187–200.
[29] Mandal, A., and Chakrabarty, D. 2018. Studies on mechanical, thermal, and barrier properties of carboxymethyl cellulose film highly filled with nanocellulose. Journal of Thermoplastic Composite Materials, 32(7), 995-1014.
[30] Noshirvani, N., Ghanbarzadeh, B., Mokarram, R., and Hashemi, M. 2017. Novel active packaging based on carboxymethyl cellulose-chitosan-ZnO NPs nanocomposite for increasing the shelf life of bread. Food Packaging and Shelf Life, 11, 106-114.
[31] El‐Bana, M.S., Mohammed, G., El Sayed, A.M., and El‐Gamal, S. 2018. Preparation and characterization of PbO/carboxymethyl cellulose/polyvinylpyrrolidone nanocomposite films. Polymer Composites, 39(10), 3712-3725.
[32] Dai, H., Huang, Y., and Huang, H. 2018. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue. Carbohydrate Polymers, 185(381), 1–11.