[1] Pavli, F., Tassou, C., Nychas, G. E., Chorianopoulos, N. 2018. Probiotic Incorporation in Edible Films and Coatings: Bioactive Solution for Functional Foods, International Journal of Molecular Sciences. 19(1), 150.
[2] Wannissorn, B., Taengphan, W., Klungsupya, P., Ruengsomwong, S., Muangman, T. 2019. Health benefit screening on 45 Thai human probiotics (TISTR strains): their safety and immunomodulatory activity in macrophage function, In Proceedings of International Conference on Biodiversity: IBD2019.Vol. 33, p. 40.
[3] De Prisco, A., Mauriello, G. 2016. Probiotication of foods: A focus on microencapsulation tool, Trends Food Science and Technology. 48, 27–39.
[4] Coma, V. 2008. Bioactive packaging technologies for extended shelf life of meat-based products, Meat Science. 78, 90–103.
[5] Espitia, P. J. P., Batista, R. A., Azeredo, H. M. C., Otoni, C. G. 2016. Probiotics and their potential application in active edible films and coatings, Food Research International. 90, 42–52.
[6] Soukoulis, C., Behboudi-Jobbehdar, S., Yonekura, L., Parmenter, C., Fisk, I. D. 2014. Stability of Lactobacillus rhamnosus GG in prebiotic edible films, Food Chemistry. 159, 302–308.
[7] Hosseini Nezhad, M., Hussain, M. A., Britz, M. L. 2015. Stress responses in probiotic Lactobacillus casei, Critical Reviews in Food Science and Nutrition. 55(6), 740-749.
[8] Tapia, M. S., Rojas-Grau, M. A., Rodríguez, E. J., Ramírez, J., Carmona, A., Martin-Belloso, O. 2007. Alginate- and gellan-based edible films for probiotic coatings on fresh-cut fruits, Journal of Food Science. 72, 190–196.
[9] Valencia-Chamorro, S. A., Palou, L., del Río, M. A., Pérez-Gago, M. B. 2011. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review, Critical Reviews in Food Science and Nutrition. 51, 872–900.
[10] Suput, D. Z., Lazic, V. L., Popovic, S. Z., Hromis, N. M. 2015. Edible films and coatings-sources, properties and application, Food and Feed Research. 42, 11–22.
[11] Ramos, O. L., Fernandes, J. C., Silva, S. I., Pintado, M. E., XavierMalcata, F. 2012. Edible films and coatings from whey proteins: a review on formulation, and on mechanical and bioactive properties, Critical Reviews in Food Science and Nutrition. 52, 533–552.
[12] Romano, N., José Tavera-Quiroz, M., Bertola, N., Mobili, P., Pinotti, A., Gómez-Zavaglia, A. 2014. Edible methylcellulose-based films containing fructo-oligosaccharides as vehicles for lactic acid bacteria, Food Research International. 64, 560–566.
[13] Viclavi, A. V., Christian, E. W. 2008. Essential of food science, In: Sugars, sweeteners and confections, 3th ed., Springer, pp 331-348.
[14] Adibpour, N., Hosseininezhad, M., Pahlevanlo, A. 2019. Application of spore-forming probiotic Bacillus in the production of Nabat-A new functional sweetener, LWT-Food Science and Technology. 108277.
[15] Vercammen, A., Vivijs, B., Lurquin, I., Michiels, C. W. 2012. Germination and inactivation of Bacillus coagulans and Alicyclobacillus acidoterrestris spores by high hydrostatic pressure treatment in buffer and tomato sauce, International Journal of Food Microbiology. 152(3), 162-167.
[16] Behnia, A., Karajian, H., Niazmand, R., Mohammadi Nafchi, E. R. 2014. Effect of cress seed gum on the rheological and textural properties of low-fat yogurt, Research and Innovation in Food Science and Technology. 3(3), 255-266.
[17] Cevoli, C., Balestra, F., Ragni, L., Fabbri, A. 2013. Rheological characterisation of selected food hydrocolloids by traditional and simplified techniques, Food hydrocolloids. 33(1), 142-150.
[18] Myers, R. H., Montgomery, D. C., Anderson-Cook, C. M. 2016. Response surface methodology: process and product optimization using designed experiments. John Wiley & Sons.
[19] Ebnesajjad, S. 2013. Handbook of Biopolymers and Biodegradable Plastics: Properties. Processing and Applications. William Andrew.
[20] Rozema, H., Beverloo, W. A. 1974. Laminar isothermal flow of non-Newtonian fluids in a circular pipe, Lebensmittel-Wissenschaft and Technology. 7(4), 223–228.
[21] Cancela, M. A., Alvarez, E., Maceiras, R. 2005. Effects of temperature and concentration on carboxymethylcellulose with sucrose rheology, Journal of Food Engineering. 71(4), 419-424.
[22] Ghannam, M. T., Esmail, M. N. 1997. Rheological properties of carboxymethyl cellulose, Journal of Applied Polymer Science. 64(2), 289-301.
[23] Edali, M., Esmail, M. N., Vatistas, G. H. 2001. Rheological properties of high concentrations of carboxymethyl cellulose solutions, Journal of Applied Polymer Science. 79(10), 1787-1801.
[24] Sworn, G. 2004. Hydrocolloid thickeners and their applications. In: Philips GO, Williams PA (eds) Gums and Stabilizers for the Food Industry, vol12. RSC Publishing, Oxford, pp 13–22.
[25] Saha, D., Bhattacharya, S. 2010. Hydrocolloids as thickening and gelling agents in food: a critical review, Journal of Food Science and Technology. 47(6), 587-597.
[26] Adibpour, N., Hosseininezhad, M., Pahlevanlo, A., Hussain, M. A. 2019. A review on Bacillus coagulans as a Spore-Forming Probiotic, Applied Food Biotechnology. 6(2), 91-100.
[27] Żyżelewicz, D., Nebesny, E., Budryn, G., Motyl, I., Rosicka-Kaczmarek, J., Krysiak, W., Libudzisz, Z. 2012. Probiotic Confectionery Products-Preparation and Properties: INTECH Open Access Publisher.
[28] Majeed, M., Majeed, S., Nagabhushanam, K., Natarajan, S., Sivakumar, A., Ali, F. 2016. Evaluation of the stability of Bacillus coagulans MTCC 5856 during processing and storage of functional foods, International journal of Food Science &Technology. 51(4), 894-901.
[29] Majeed, M., Majeed, S., Nagabhushanam, K., Arumugam, S., Beede, K., Ali, F. 2018. Evaluation of probiotic Bacillus coagulans MTCC 5856 viability after tea and coffee brewing and its growth in GIT hostile environment. Food Research International, 121, 497-505.
[30] Jafari, M., Mortazavian, A. M., Hosseini, H. 2017. Effect of Household Cooking Methods on the Viability of Bacillus Probiotics Supplemented in Cooked Sausage, Nutrition and Food Sciences Research. 4(1), 47-56.
[31] Marcial-Coba, M. S., Pjaca, A. S., Andersen, C. J., Knøchel, S., Nielsen, D. S. 2019. Dried date paste as carrier of the proposed probiotic Bacillus coagulans BC4 and viability assessment during storage and simulated gastric passage, LWT-Food Science and Technology. 99, 197-201.