ویژگی های رنگ، بافت و قابلیت پذیرش پنیرسفید فراپالوده سین بیوتیک تیمار شده با آنزیم ترانس گلوتامیناز میکروبی طی نگهداری

نویسندگان
گروه علوم و صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان
چکیده
در این تحقیق، اثر دوره نگهداری بر برخی خصوصیات پنیر سفید فراپالوده سین­بیوتیک در مقایسه با دو نمونه شاهد پنیر غیرپروبیوتیک و پروبیوتیک مورد بررسی قرار گرفت. پنیر فراپالوده سین­بیوتیک با فرمول بهینه مقدار ۴۳/۰ واحد آنزیم ترانس­گلوتامیناز به ازاء هر گرم پروتئین، میزان ۲۴/۸ درصد محلول آب­پنیر با املاح کاهش یافته (جایگزینی ناتراوه با محلول حاوی 34درصد پودر آب­پنیر دمینراله) و ۷۱/۰ درصد اینولین تولید گردید. در این پژوهش، از لاکتوباسیلوس اسیدوفیلوس La5 به­عنوان باکتری پروبیوتیک استفاده شد. ویژگی نمونه­های پنیر از نظر پارامترهای رنگ، آزمون پروفایل بافت (سفتی، پیوستگی، حالت ارتجاعی، حالت صمغی، قابلیت جویدن) و ویژگی حسی در طی مدت دو ماه نگهداری در یخچال و در فواصل زمانی 3، 15، ۳۰ و ۶۰ روز پس از تولید مورد ارزیابی قرار گرفت. نتایج آزمون پروفایل بافت نشان داد که پنیر سین­بیوتیک در تمام مقاطع زمانی از میزان سفتی، چسبندگی، پیوستگی، حالت صمغی و قابلیت جویدن بالاتری (05/0p<) نسبت به دو نمونه شاهد پروبیوتیک و غیرپروبیوتیک برخوردار بود. هرچند میزان ارتجاع­پذیری پنیر بهینه نیز در تمامی دوره­های نگهداری بالاتر از دو نمونه شاهد بود، اما این اختلافات معنی­دار نگردید. مقادیر سفتی، صمغی و قابلیت جویدن پنیر تا روز 30 نگهداری در تمامی نمونه­ها افزایش و سپس تا پایان زمان نگهداری کاهش یافت. نتایج رنگ­سنجی نمونه­ها نشان داد که میزان روشنایی (L*) نمونه سین­بیوتیک به­طور معنی­داری (05/0p<) بالاتر از دو نمونه دیگر بود اما تفاوتی میان نمونه­ها از نظر شاخص­های a* و b* مشاهده نگردید. به­علاوه، میزان روشنایی در تمامی نمونه­های تولیدی طی دوره رسیدن کاهش یافت (05/0p<). براساس نتایج خصوصیات مورد ارزیابی، نمونه پنیر فراپالوده سینبیوتیک تولیدی از کیفیت بالاتری نسبت به دو نمونه­ی شاهد پنیر غیرپروبیوتیک و پروبیوتیک پس از دو ماه نگهداری در یخچال برخوردار بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Texture, Color and Sensory Characteristics of Synbiotic Ultrafiltrated White Cheese Treated with Microbial Transglutaminase Enzyme During Storage Period

نویسندگان English

Fereshteh Torabi
Hossein Jooyandeh
Mohammad Noshad
Hassan Barzegar
Department of Food Science and Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
چکیده English

In this study, the effect of storage period on some characteristics of synbiotic ultrafiltrated white cheese (SC) as compared with two non-probiotic (NPC) and probiotic cheese (PC) samples were evaluated. SC with optimized formulation as: 0.43 microbial transglutaminase enzyme (U/g protein), 8.24% demineralized whey powder solution (34% T.S. substituted with retentate) and 0.71% inulin was produced. Lactobacillus acidophilus LA5 was used as probiotic bacteria. Cheese samples were evaluated for color indexes, texture profile analysis (hardness, adhesiveness, cohesiveness, springiness, gumminess and chewiness) and total acceptance during a two-month storage period (3, 15,30, and 60 days) under refrigeration conditions. Results of texture profile analysis of cheese samples showed that except for springiness, all texture values of SC sample during the storage intervals were significantly (p<0.05) higher than NPC- and PC- control cheeses. Although SC sample had the higher springiness than other cheeses, it was not significant (p>0.05). The hardness, gumminess and chewiness values of the all cheeses until 30 days of storage were increased and thereafter decreased significantly (p<0.01). In terms of color indexes, SC samples had the higher L* values than other cheeses but no difference in relation to a* and b* parameters were determined. decreasing trend and a decreasing and increasing trend respectively. Furthermore, during the storage period, L* value of all cheese treatments were meaningfully (p<0.05) decreased. Based on the results of evaluated parameters, SC sample had a higher cheese quality than two control cheeses after two months of cold storage.

کلیدواژه‌ها English

Ultrafiltrated cheese
Probiotic
Texture profile analysis
Color index
[1] FAO, (2018). Dairy Market Review. Food and Agriculture Organization of the United Nations, Annual report, April 2018, Rome. Available online at: http://www.fao.org/3/I9210EN/i9210en.pdf.
[2] Rivera-Espinoza, Y., Gallardo-Navarro, Y. (2010). Non-dairy probiotic products. Food Microbiol., 27, 1-11.
[3] Granato, D., Branco, G.F., Nazzaro, F., Cruz, A.G., Faria. J.F. (2010). Functional foods and nondairy probiotic food development: Trends, concepts, and products. Food Sci. Food Saf., 9, 292-302.
[4] Oluk, A., Guven, M. Hayaglou, A. (2014). Proteolysis, texture and microstructure of low-fat Tulum cheese affected by exopolysaccharide-producing cultures during ripening. Int. J. Food Sci. Technol. 49, 435–443.
[5] Janer, C., Pelaez, C., Requena, T. (2004). Caseinomacropeptide and whey protein concentrate enhance Bifidobacterium lactis growth in milk. Food Chem., 86, 263-267.
[6] Shihata, A., Shah, N. P. (2002). Influence of addition of proteolytic strains of Lactobacillus delbrueckii subsp. bulgaricus to commercial ABT starter cultures on taxture of yoghurt, exopolysaccharide production and survival of bacteria. Intl. Dairy J., 12, 765-772.
[7] Jooyandeh, H., Minhas, K.S., Kaur, A. (2007). Sensory Quality and Chemical Composition of Wheat Breads Supplemented with Fermented Whey Protein Concentrate and Whey Permeate. J. Food Sci. Technol., 46(2), 146-148.
[8] Svanborg, S., Johansen, A., Abrahamsen, R.K., Skeie, S.B. (2015). The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk. J. Dairy Sci. Technol., 98, 5829-5840.
[9] Dalvi, M., Hamdami, N. (2011). Characterization of Thermophysical Properties of Iranian Ultrafiltrated White Cheese: Measurement and Modeling. J. Agr. Sci. Technol., 13, 67-78.
[10] Keri Marshall, N. (2004). Therapeutic applications of whey protein. Altern Med Rev., 9(2), 136-156.
[11] Bounous, G. (2000). Whey protein concentrate (WPC) and glutathione modulation in cancer treatment. Anticancer Res., 20(6), 4785-4792.
[12] Alimoradi, F., Hojati, E., Jooyandeh, H., Zehni-Moghadam, S.A.H. and Moludi, J. (2016). Whey proteins: Health benefits and food applications. J. Int. Res. Med. Pharm. Sci. 9(2): 63-73.
[13] Gonzalez-Tomás, L., Bayarri, S., Costell, E. (2009). Inulin-enriched dairy desserts: physicochemical and sensory aspects. J. Dairy Sci. Technol., 92(9), 4188-4199.
[14] Jaros, D., Partschefeld, C., Henle, T., Rohm, H. (2006). Tranglutaminase in Dairy products: Chemistry, physics, Applications. J. Texture Stu., 37(2), 113-155.
[15] Ozer, B., Kirmaci, H.A., Oztekin, S., 2007. Incorporation of microbial transglutaminase into non-fat. Int. Dairy J., 17, 199–207.
[16] Bonisch, M.P., Huss, M., Weitl, K., Kulozik, U., 2007. Transglutaminase cross-linking of milk proteins and impact on yoghurt gel properties. Int. Dairy J., 17, 1360–1371.
[17] Clarke, D.D., Mycek, M.J., needle, A., waelsch, H. (1959). The incorporation of amines into proteins. Arch. Biochem. Biophys., 79, 338–354.
[18] Danesh, E., Jooyandeh, H., Goudarzi, M. (2017). Improving the rheological properties of low-fat Iranian UF-Feta cheese by incorporation of whey protein concentrate and enzymatic treatment of transglutaminase. Iranian Journal Food Science Technology., 14(67), 285-298 (In Persian).
[19] Torabi, F., Jooyandeh, H., Noshad, M., Barzegar, B. (2019). Modeling and optimization of physicochemical and organoleptical properties and Lactobacillus acidophilus viability in ultrafiltrated synbiotic cheese, containing microbial transglutaminase enzyme, whey and inulin. J. Res. Innov. Food Sci. Technol., 8(2), 137-150 (In Persian).
[20] Jooyandeh, H., Nooshkam, M., Davari, A.B. (2016). Effects of Different Manufacturing Methods on Yield, Physicochemical and Sensory Properties of Mozzarella Cheese. Iranian Food Sci. Technol. Res. J., 12(3), 371-381.
[21] Jooyandeh, H. (2009). Effect of fermented whey protein concentrate on texture of Iranian white cheese. J. Texture Stu., 40(5), 497-510.
[22] Katsiari, M., Voutsinas, L., Kondyli, E., Alichanidis, E. (2002). Flavour enhancement of low-fat Feta-type cheese using a commercial adjunct culture. Food Chem., 79(2), 193-198.
[23] Bourne, M. (2004). Relation between texture and mastication. J. Texture Stu., 35(2), 125-143.
[24] Aminifar, M., Hamedi, M., Emam-Djomeh, Z., Mehdinia, A. (2013). The effect of ovine and bovine milk on the textural properties of lighvan cheese during ripening. Int. Dairy J., 66(1), 45-53.
[25] Chevanan, N., Muthukumarappan, K., Upreti, P., Metzger, L.E. (2006). Effect of calcium and phosphorus, residual lactose and salt‐to‐moisture ratio on textural properties of cheddar cheese during ripening. J. Texture Stu., 37(6), 711-730.‌
[26] Ozer, B., Adnan Hayaloglu, A., Yaman, H., Gürsoy, A., Sener, L. (2013). Simultaneous use of transglutaminase and rennet in whitebrined cheese production. Int. Dairy J., 33, 129-134.
[27] Mleko, S., Gustaw, W., Glibowski, P., Pielecki, J. (2004). Stress relaxation study of UF- milk cheese with transglutaminase. J. Dairy Sci. Technol., 32, 237-244.
[28] Radosevic, V., Tonkovic, K., Gregurek, L., Kos, B., Suskovic, J. (2007). Production of fresh probiotic cheese with addition of Transglutaminase. Mlijekarstvo. 57(1), 15-29.
[29] Liu, H., Xu, X.M., Guo, S.D. (2008). Comparison of full‐fat and low‐fat cheese analogues with or without pectin gel through microstructure, texture, rheology, thermal and sensory analysis. Int. J. Food Sci. Technol., 43(9), 1581-1592.‌
[30] Tunick, M.H., Malin, E.L., Smith, P.W., Shieh, J.J., Sullivan, B.C., Mackey, K.L. (1993). Proteolysis and rheology of low fat and full fat Mozzarella cheeses prepared from homogenized milk. J. Dairy Sci. Technol., 76(12), 3621-8.
[31] Bryant, A., Ustunol, Z., Steffe, J. (1995). Texture of Cheddar cheese as influenced by fat reduction. J. Food Sci., 60(6), 1216-9.
[32] Cooke, D. R., Khosrowshahi, A., McSweeney, P.L. (2013). Effect of gum tragacanth on the rheological and functional properties of full-fat and half-fat cheddar cheese. J. Dairy Sci. Technol., 93(1), 45-62.
[33] McSweeney, P.L.H. (2004). Biochemistry of cheese ripening. Int J Dairy Technol., 57(23), 127 -44.
[34] Rostamabadi, H., Jooyandeh, H., Hojjati, M. (2016). Optimization of Iranian low-fat cheese with addition of Persian and almond gums as fat replacers by response surface methodology. J. Res. Innov. Food Sci. Technol., 5(3), 235-248 (In Persian).
[35] Juan, B., Zamora, A., Quintana, F., Guamis, B., & Trujillo, A.J. (2013). Effect of inulin addition on the sensorial properties of reduced‐fat fresh cheese. International Journal of Dairy Technology, 66(4):478-483.
[36] Gomaa, E.A. (1990). Ultrafiltration in soft white" domiati" cheese manufacture. Dissertation, East Lansing, MI. Michigan State University. Department of Food Science and Human Nutrition.
[37] Kealy, T. (2006). Application of liquid and solid rheological technologies to the textural characterization of semi-solid foods. Food Res. Int., 39(3), 265-276.
[38] Fox, P.F., Cogan, T.M., Guinee, T.P., McSweeney, P.L.H. (2017). Fundamentals of Cheese Science. 2nd eds., Springer publication, USA. pp. 643-652.
[39] Rostamabadi, H., Jooyandeh, H., Hojjati, M. (2017). Optimization of physicochemical, sensorial and color properties of ultrafiltrated low-fat Iranian white cheese containing fat replacers by Response Surface Methodology. Iranian Journal Food Science Technology., 14(63), 91-106 (In Persian).
[40] Jooyandeh, H., Danesh, E., Goudarzi, M. (2017). Effect of microbial transglutaminase on physical, rheological, textural and sensory properties of light ice cream. Iranian Journal Food Science Technology., 13(4), 469-479 (In Persian).