بوبری روغن دنبه گوسفند با امواج فراصوت و ارزیابی شدت بو با استفاده از بینی الکترونیکی و آزمون حسی

نویسندگان
1 دانشجوی دکتری، بخش مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران
2 استادیار، بخش مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران
3 استادیار، بخش علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران
چکیده
روغن دنبه گوسفند به دلیل پایداری در برابر اکسیداسیون و طعم مطلوب آن، یک روغن سرخ کردنی مناسب است. این روغن با داشتن اسیدهای چرب‌ مفید می­تواند نقش موثری در سلامت مصرف ­کننده ایفا نماید. فرایندهای تصفیه روغن دنبه، از جمله بوبری آن در افزایش کیفیت روغن اهمیت زیادی دارند. بوبری یک فرآیند جداسازی است که در آن مقدار مشخصی از گاز جدا کننده ترکیبات فرار، در مدت زمان معینی از میان روغن داغ تحت شرایط خلاء عبور می‌کند و ترکیبات فرار و عامل ایجاد بو را از روغن خارج می‌کند. در این پژوهش، بوبری روغن دنبه با کمک امواج فراصوت انجام شد و اثرات دما، زمان و توان فراصوت روی شدت بو در طی فرایند بوبری، با استفاده از روش سطح پاسخ بررسی گردید. شدت بو به دو روش حسی و بینی الکترونیکی ارزیابی شد. همچنین، ترکیب اسیدهای چرب قبل و بعد از فرایند بوبری مقایسه شدند. نتایج پروفایل اسیدهای چرب نشان داد که حدود %72/46 از اسیدهای چرب روغن دنبه را اسیدهای چرب اشباع (پالمیتیک، استئاریک، مارگاریک و میریستیک) و مابقی (%28/53) آن ­را اسیدهای چرب غیر اشباع تشکیل داده بود که عمده­ترین آن‌ها اسید اولئیک (%67/39) بود. بر اساس نتایج آنالیز واریانس، ترکیب و نوع اسیدهای چرب قبل و بعد از بوبری نزدیک به هم بوده و مقدار اسیدهای چرب در طول بوبری تغییر جزئی داشتند. در نهایت، شرایط بهینه در دمای 162 درجه سلسیوس، زمان 110 دقیقه و توان فراصوت 165 وات برای بوبری روغن دنبه به کمک امواج فراصوت، به وسیله بینی الکترونیکی و ارزیابی حسی تعیین شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Ultrasound-assisted deodorization of sheep tail fat and evaluation of odor intensity using electronic nose and sensorial analysis

نویسندگان English

Asiye Doosti 1
Kazem Jafari Naeimi 2
Mohammad Balvardi 3
Hamid Mortezapour 2
1 Ph.D. student, Department of Biosystems Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
2 Assistant Professor, Department of Biosystems Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
3 Assistant Professor, Department of food science and technology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran.
چکیده English

Sheep tail fat is a suitable frying oil due to its good flavor and oxidation stability. This oil with its useful fatty acids can to play beneficial effect on consumer health. The refining processes of sheep tail oil, including its deodorization have high importance in the enhancement of the oil quality. Deodorization is a separation process in which a certain amount of the volatile compounds separator gas passes through the hot oil under vacuum condition and removes the volatile and odorous compounds from the oil. In this study, the ultrasound-assisted deodorization of sheep tail fat was carried out and the effects of temperature, time, and ultrasonic power on odor intensity during the deodorization process were investigated using the response surface methodology. The intensity of the odor was assessed by electronic nose and sensorial evaluation. Also, the fatty acid composition was compared before and after the deodorization process. The results of fatty acids profile showed that about 46.72% of sheep tail oil fatty acids were saturated fatty acids (palmitic, stearic, margaric, and myristic) and the rest (53.28%) was unsaturated fatty acids, which the majority of them was oleic acid (39.67%). According to the results of analysis of variance, the composition and kind of the fatty acids before and after the deodorization were close together and the amount of fatty acids changed slightly during the deodorization. Finally, the optimized conditions at the temperature of 162 °C, the time of 110 min and the ultrasonic power of 165 W were determined using electronic nose and sensory evaluation for ultrasound-assisted deodorization of sheep tail oil.

کلیدواژه‌ها English

Ultrasound
Fatty acids
Deodorization
response surface methodology
Volatile compounds
[1] Bashiri, P., & Fateme. H. 2004. Fractionation of beef tallow for proper food application. Iranian Journal of Food Science and Technology: 11-19. [In Persian].
[2] Imam Jomeh, N., Ali Panah, M., & Eqbaleh, A. 1995. Evaluation of fatty acids in sheep tail fat. visceral fat and meat of Iranian three-lambed sheep. Proceedings of the First Iranian Sheep and Goat Research Conference. Iranan National Animal Science Research Center. Tehran. Iran: 223-230. [In Persian].
[3] Belitz, H.D., & Grosch, W. 1999. Edible fats and oils. Food Chemistry. Springer, Berlin, Heidelberg. 602-630.
[4] MacKenzie, A.D., & Stevenson, D.E. 2000. Production of high-oleic acid tallow fractions using lipase-catalyzed directed interesterification, using both batch and continuous processing. Enzyme and Microbial Technology 27: 302-311.
[5] Akterian, S. 2009. Modelling and evaluating the batch deodorization of sunflower oil. Journal of Food Engineering 91: 29-33.
[6] Ruiz-Méndez, M.V. 2011. Contribution of denaturing and deodorization processes of oils to toxic oil syndrome. Chemico-Biological Interactions 192: 142-144.
[7] De oliveira, D.A., minozzo, M.G., licodiedoff, S., & waszczynskyj, N. 2016. Physicochemical and sensory characterization of refined and deodorized tuna (Thunnus albacares) by-product oil obtained by enzymatic hydrolysis. Food Chemistry 207: 187-194.
[8] Ahmadzadeh, S., & Goli, A.H. 2010. Evaluation of new methods to deodorize crude fish oil. 3rd International Seminar on Oil Seeds and Edible Oils. Tehran. [In Persian].
[9] Oliveros, M.C.C., Pavón, J.L.P., Pinto, C.G.A., Laespada, M.E.F., Cordero, B.M., & Forina, M. 2002. Electronic nose based on metal oxide semiconductor sensors as a fast alternative for the detection of adulteration of virgin olive oils. Analytica Chimica Acta 459: 219-228.
[10] Yang, W., Yu, J., Pei, F., Mariga, A.M., Ma, N., Fang, Y., & Hu, Q. 2016. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME–GC–MS and electronic nose. Food Chemistry 196: 860-866.
[11] Wei, Z., Wang, J., & Zhang, W. 2015. Detecting internal quality of peanuts during storage using electronic nose responses combined with physicochemical methods. Food Chemistry 177: 89-96.
[12] Zakeri, T. 2013. Designing of pomegranate seed oil deodorization process. M.Sc. thesis. Department of Food Science and Engineering. University of Tehran. [In Persian].
[13] Hedayatifar, R. 2017. Evaluation the rate of trans fatty acids isomers in ghee and tail sheep consumption in Lorestan. Lorestan University of Medical Sciences Journal 19 (2): 1-8. [In Persian].
[14] Yılmaz, M., & Karakaya, M. 2010. Thermal analysis of lipids isolated from various tissues of sheep fats. Journal of Thermal Analysis and Calorimetry 101: 403-409.
[15] Jahouach-Rabai, W., Trabelsi, M., Van Hoed, V., Adams, A., Verhé, R., De Kimpe, N., & Frikha, M. 2008. Influence of bleaching by ultrasound on fatty acids and minor compounds of olive oil. Qualitative and quantitative analysis of volatile compounds (by SPME coupled to GC/MS). Ultrasonics Sonochemistry 15: 590-597.
[16] Keramat-Jahromi, M., Mohtesabi, S.A.Q., Musa Zadeh, H., Ghasemi Varnamekhati, M., Rafiei, S., & Sondi Roman, A. 2019. Evaluation of a machine olfaction to classify the quality of dried date fruit by electrohydrodynamic, hot air, and the hybrid drying techniques. Iranian Biosystems Engineering 50 (1): 241-251. [In Persian].
[17] Pearce, T.C., Schiffman, S.S., Nagle, H.T., & Gardner, J.W. 2003. Handbook of Machine Olfaction. Willy-VCH. Weinheim.
[18] Scott, S.M., James, D., & Ali, Z. 2006. Data analysis for electronic nose systems. Microchimica Acta 156: 183-207.
[19] Iranian National Standardization Organization, Animal and vegetable fats and oils analysis by gas chromatography of methyl esters of fatty acids (No. 4091). 1997. [In Persian].
[20] Riyadi, A.H., Muchtadi, T.R., Andarwulan, N., & Haryati, T. 2016. Pilot Plant Study of Red Palm Oil Deodorization Using Moderate Temperature. Agriculture and Agricultural Science Procedia 9: 209-216.
[21] Chew, S.C., Tan, C.P., & Nyam, K.L. 2017. Application of response surface methodology for optimizing the deodorization parameters in chemical refining of kenaf seed oil. Separation and Purification Technology 184: 144-151.
[22] Karabulut, I., Topcu, A., Yorulmaz, A., Tekin, A., & Ozay, D.S. 2005. Effects of the industrial refining process on some properties of hazelnut oil. European Journal of Lipid Science and Technology 107: 476-480.
[23] Ortega-García, J., Gámez-Meza, N., Noriega-Rodriguez, J.A., Dennis-Quiñonez, O., García-Galindo, H.S., Angulo-Guerrero, J.O., & Medina-Juárez, L.A. 2006. Refining of high oleic safflower oil: effect on the sterols and tocopherols content. European Food Research and Technology 223: 775-779.
[24] Widarta, I.W.R., Andarwulan, N., & Haryati, T. 2012. Optimasi proses deasidifikasi dalam pemurnian minyak sawit merah skala pilot plant [Optimization of Deacidification Process in Red Palm Oil Purification on Pilot Plant Scale]. Jurnal Teknologi dan Industri Pangan 23 (1): 41-47.
[25] Wei, J., Chen, L., Qiu, X., Hu, W., Sun, H., Chen, X., Bai, Y., Gu, X., Wang, C., Chen, H., & Hu, R. 2015. Optimizing refining temperatures to reduce the loss of essential fatty acids and bioactive compounds in tea seed oil. Food and Bioproducts Processing 94: 136-146.
[26] Wang, C.C., Chou, Y.Y., Sheu, S.R., Jang, M.J., & Chen, T.H. 2011. Application of ultrasound thermal process on extracting flavor and caffeine of coffee. Thermal Science 15 (1): 69-74.
[27] Shotipruk, A., Kaufman, P.B., & Wang, H.Y. 2001. Feasibility study of repeated harvesting of menthol from biologically viable menthaxpiperata using ultrasonic extraction. Biotechnology Progress 17 (5): 924-928.
[28] Khorgami, M.H., Ganjali, M.R., & akhgar, M.R. 1993. Investigation of physical and chemical properties of tail fat oil and its esterified root exchange. Iranian Journal of Chemistry and Chemical Engineering 2: 66-72. [In Persian].
[29] Aliepanah, M. 1995. Evaluation of fat characteristics of Baluchi, Kurdish, and Badghis sheep. M.Sc. thesis. Faculty of Agriculture. Tarbiat Modares University. [In Persian].
[30] Gharachorloo, M. 2006. Evaluation of fractionation quality and improvement of animal fat quality properties for production of oils with suitable applied properties in food industry. Ph.D. thesis. Department of Food Science and Technology. Islamic Azad University-Science and Research Branch. [In Persian].
[31] Hénon, G., Kemény, Z., Recseg, K., Zwobada, F., & Kovari, K. 1999. Deodorization of vegetable oils. Part I: Modelling the geometrical isomerization of polyunsaturated fatty acids. Journal of the American Oil Chemists' Society 76 (1): 73-81.
[32] Guillen, M.D., & Goicoechea, E. 2009. Oxidation of corn oil at room temperature: Primary and secondary oxidation products and determination of their concentration in the oil liquid matrix from 1H nuclear magnetic resonance data. Food Chemistry 116 (1): 183-192.
[33] Li, H., Pordesimo, L., & Weiss, J. 2004. High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International 37: 731-738.
[34] Zhang, Z.S., Wang, L.J., Li, D., Jiao, S.S., Chen, X.D., & Mao, Z.H. 2008. Ultrasound-assisted extraction of oil from flaxseed. Separation and Purification Technology 62: 192-198.
[35] Chemat, S., Lagha, A., Amar, H.A., & Chemat, F. 2004. Ultrasound assisted microwave digestion. Ultrasonics Sonochemistry 11: 5-8.
[36] Fashandi, H., Ghavami, M., Gharachorloo M., & Abbasi, R. 2016. Application of ultrasound in degumming of soybean and sunflower oils. Journal of Food Industry Research 26 (1): 13-21. [In Persian].
[37] Abbasi, R., Gharachorloo, M., Ghavami, M., & Asadi, G.H. 2014. Application of ultrasonic waves in bleaching of soybean oil and determination of time and temperature for ultrasonic bath. Iranian Journal of Nutrition Sciences & Food Technology 9 (2): 75-84. [In Persian].