مدل‌سازی تغییرات کیفی ازگیل (Mespilus germanica) طی نگهداری در سردخانه با استفاده از مدل‌های سینتیکی و شبکه‌های عصبی مصنوعی

نویسندگان
1 دکتری تخصصی، استادیار، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران
2 دکتری تخصصی، دانشیار، گروه علوم و مهندسی صنایع غذایی، دانشگاه زنجان، زنجان، ایران
3 دکتری تخصصی، دانشیار، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران
چکیده
هدف از انجام این پژوهش بررسی سینتیک تخریب خصوصیات کیفی اصلی ازگیل طی نگهداری در سردخانه می‌باشد. ازگیل (Mespilus germanica) بطور گسترده و بیشتر به صورت وحشی در شمال ایران می‌روید و کاربرد فراوانی به سبب خواص تغذیه‌ای و درمانی دارد. در میوه‌ها خصوصیات کیفی به عنوان معیار مهم پذیرش توسط مصرف کننده است، از اینرو ارزیابی پارامترهای موثر بر کیفیت ازگیل حائز اهمیت می‌باشد. از آنجائی­که اندازه‌گیری این پارامترها بسیار هزینه‌بر و زمان‌بر است، بنابراین پیش‌بینی آنها بسیار ضروری می‌باشد. در پژوهش حاضر مدل‌های ریاضی و شبکه‌های عصبی مصنوعی (ANNs) برای مدل‌سازی ارتباط بین خصوصیات فیزیکی و شیمیایی و ویژگی‌های رنگی با زمان نگهداری در سردخانه بکار برده شد. از پنج مدل سینتیکی درجه صفر، درجه اول، درجه دوم، تبدیل جزء و ویبال برای مدل‌سازی با کمک نرم افزار متلب استفاده شد. از بین این مدل‌ها، مدل ویبال به عنوان بهترین مدل در پیش‌بینی تغییرات پارامترهای فیزیکی و شیمیایی ( و ) و رنگی ( و ) انتخاب گردید. در مدل‌سازی ANN از شبکه پرسپترون چند لایه‌ای (MLP) با تعداد مختلفی نورون استفاده گردید. ورودی‌های شبکه شامل زمان نگهداری، رطوبت ازگیل و درجه رسیدگی و خروجی آن نیز مقادیر خصوصیات فیزیکی و شیمیایی و رنگی بود. همچنین از الگوریتم لونبرگ-مارکوآرت به منظور آموزش شبکه و از تابع‌های آستانه‌ای سیگموئید لگاریتمی، خطی و تانژانت هایپربولیک سیگموئید استفاده گردید. نتایج نشان داد که شبکه MLP با تابع آستانه‌ای خطی و پیکربندی‌های 3-4-8-3 و 2-3-7 بهترین دقت را به ترتیب برای پیش‌بینی ویژگی‌های فیزیکی و شیمیایی ( و ) و خصوصیات رنگی ( و ) دارند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modelling medlar (Mespilus germanica) quality changes during cold storage using kinetics models and artificial neural network

نویسندگان English

Mohsen Zandi 1
Ali Ganjloo 2
Mandana Bimakr 3
1 Assistant Professor, Department of Food Science and Engineering, Faculty of agricultural University of Zanjan, Zanjan, Iran
2 Associate Professor, Department of Food Science and Engineering, University of Zanjan, Zanjan, Iran
3 Associate Professor, Department of Food Science and Engineering, Faculty of agricultural University of Zanjan, Zanjan, Iran
چکیده English

The aim of this research was to investigate the degradation kinetics of the major quality properties of medlar (Mespilus germanica) during cold storage. Medlar is a widely growth in northern Iran and its fruit is used as a nutritional component and as a medicinal remedy. In fruits, quality properties are used as a consumer-based criteria of acceptability. So it is important to evaluate parameters that affected the medlar quality. Measurement of these parameters is an expensive and time-consuming process. Therefore, parameter prediction due to affecting factors will be more useful. In the present research, mathematical models and artificial neural networks (ANN) were used for modelling the relationship between physicochemical properties and color attributes with cold storage time. Five kinetic models viz. zero order, first order, Second order, fractional conversion and Weibull models were used for modelling using MATLAB. Among the kinetics models, the Weibull model was found to be more suitable to predict the changes in all physicochemical ( , ) and color ( , ) parameters. In ANN, multi-layer perception (MLP) used with different number of neurons. The network’s inputs include storage time, medlar moisture content and ripening stage and the network’s output were the values of the physicochemical and color properties. The training rule was Momentum Levenberg-Marquardt. The transfer functions were Tansig, Purelin and Logsig. The results showed that MLP network with Levenberg-Marquardt training function, Purelin transfer function and 3-8-4-3 and 3-7-2 topologies had the best accuracy for prediction of for physicochemical and color properties. This network can predict physicochemical and color properties of the medlar with coefficient of 0.9983 and 0.9992 and MSE of 0.021, 0.000008 and 0.000059 respectively.

کلیدواژه‌ها English

Medlar
ANN
Kinetics models
mathematical modeling
Physicochemical properties
Al-Amoudia, R., Taylana, O., Kutlu, G., MusluCan, A., Sagdic, O., & Dertli, E. (2019). Characterization of chemical, molecular, thermal and rheological properties of medlar pectin extracted at optimum conditions as determined by Box-Behnken and ANFIS models. Food Chemistry, 271, 650-662.
Amodio, M., Derossi, A., & Colelli, G. (2013). Modelling sensorial and nutritional changes to better define quality and shelf life of fresh-cut melons. Journal of Agricultural Engineering, 44(1), 38-45.
Amodio, M., Dollo, L., Rinaldi, R., & Colelli, G. (2012). Degradation patterns for external and nutritional quality parameters of fresh-cut “Cantaloupe” melons. Acta Horticulturae, 948, 641-648.
Arzate-Vazquez, I., Chanona-Perez, J., Perea-Flores, M., Calderon-Domı´nguez, G., Moreno-Armendariz, M., & Gutierrez-Lopez, G. (2011). Image processing applied to classification of avocado variety Hass (Persea americana Mill) during the ripening process. Food and Bioprocess Technology, 4, 1307-1313.
Ashournezhad, M., & Ghasemnezhad, M. (2012). Effects of cellophane-film packaging and cold storage on the keeping quality and storage life of loquat fruit (Eriobotrya japonica). Iranian Journal of Nutrition Sciences & Food Technology, 7(2), 95-102.
Avila, I., & Silva, C. (1999). Modelling kinetics of thermal degradation of colour in peach puree. Journal of Food Engineering, 39(2), 161-166.
Cardenas-Perez, S., Chanona-Perez, J., Mendez-Mendez, J., Calderon-Domınguez, G., Lopez-Santiago,
R., Perea-Flores, M., & Arzate-Vazquez, I. (2017). Evaluation of the ripening stages of apple (Golden Delicious) by means of computer vision system. biosystems engineering, 159, 46-58.
Castellanos, D. A., & Herrera, A. O. (2015). Mathematical Models for the Representation of Some Physiological and Quality Changes during Fruit Storage. Journal of Postharvest Technology, 03(1), 18-35.
Chen, C., & Ramaswamy, H. (2002). Color and Texture Change Kinetics in Ripening Bananas. LWT - Food Science and Technology, 35(5), 415-419.
Chowdhury, S., & Das Saha, P. (2011). Comparative analysis of linear and nonlinear methods of estimating the pseudo-second-order kinetic parameters for sorption of malachite green onto pretreated rice husk. Bioremediation Journal, 15, 181-188.
Corradini, M., & Peleg, M. (2007). A Weibullian model for microbial injury and mortality. International Journal of Food Microbiology, 119(3), 319-328.
Corradini, M., & Peleg, M. (2007). Shelf life estimation from accelerated storage data. Trends in Food Science and Technology, 18, 37-47.
Crecente-Campo, J., Nunes-Damaceno, M., Romero-Rodríguez, M., & Vázquez-Odériz, M. (2012). Color, anthocyanin pigment, ascorbic acid and total phenolic compound determination in organic versus conventional strawberries (Fragaria×ananassa Duch, cv Selva). Subtropical plant science, 28(1), 23-30.
Cunha, L., Oliveira, A., Aboim, A., Frias, J., & Pinheiro-Torres, A. (2001). Stochastic approach to the modelling of water losses during osmotic dehydration and improved parameter estimation. International journal of Food Science and Technology, 36, 253-262.
De Ketelaere, B., Stulens, J., Lammertyn, J., Cuong, N., & De Baerdemaeker, J. (2006). A methodological approach for the identification and quantification of sources of biological variance in postharvest research. Postharvest Biology and Technology, 39(1), 1-9.
Dhakala, S., Balasubramaniam, V., Ayvaza, H., & Rodriguez-Saona, L. (2018). Kinetic modeling of ascorbic acid degradation of pineapple juice subjected to combined pressure-thermal treatment. Journal of food engineering, 224, 62-70.
Dincer, B., Colak, A., Aydin, N., Kadioglu, A., & Guner, S. (2002). Characterization of polyphenoloxidase from medlar fruits (Mespilus germanica L., Rosaceae). Food Chemistry, 77, 1–7.
Do Nascimento Nunes , M., Nicometo, M., Emond, J. P., Melis, R. B., & Uysal, I. (2014). Improvement in fresh fruit and vegetable logistics quality: Berry logistics field studies. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 372.
Eyarkai Nambi, V., Thangavel, K., Shahir, S., & Chandrasekar, V. (2016). Color Kinetics During Ripening of Indian Mangoes. International Journal of Food Properties, 19(10), 2147-2155.
Gruz, J., Ahmet Ayaz, F., Torun, H., & Strnad, M. (2011). Phenolic acid content and radical scavenging activity of extracts from medlar (Mespilus germanica L.) fruit at different stages of ripening. Food Chemistry, 124, 271–277.
Gupta, M., Jin, J., & Homma, N. (2003). Static and dynamic neural networks: from fundamentals to advanced theory. Hoboken, New Jersey: John Wiley & Sons, Inc.
Gupte, S., El‐Bisi, H., & Francis, F. (1964). Kinetics of Thermal Degradation of Chlorophyll in Spinach Puree. Journal of Food Science, 29(4), 379–382.
Gwanpua, S., Verlinden, B., Hertog, M., Bulens, I., Poel, B. d., Impe, J., . . . Geeraerd, A. (2012). Kinetic modeling of firmness breakdown in ‘Braeburn’ apples stored under different controlled atmosphere conditions. Postharvest Biology and Technology, 67, 68-74.
Hacıseferogulları, H., Ozcan, M., Hakan Sonmete, M., & Ozbek, O. (2005). Some physical and chemical parameters of wild medlar (Mespilus germanica L.) fruit grown in Turkey. Journal of Food Engineering, 69, 1–7.
Hashim, N., Janius, R., Baranyai, L., Rahman, R., Osman, A., & Zude, M. (2012). Kinetic Model for Colour Changes in Bananas During the Appearance of Chilling Injury Symptoms. Food and bioprocess technology, 2952-2963.
Heldman, D. (2013). Food preservation process design. US: Springer.
Helrich, K. (1990). AOAC Official Methods of Analysis. Official Methods of Analysis of the AOAC International.
Isbilir, S., Kabala, S., & Yagar, H. (2019). Assessment of in vitro Antioxidant and Antidiabetic Capacities of Medlar (Mespilus germanica). Not Bot Horti Agrobo, 47(2), 384-389.
Jahangiri-Saleh, M., Hassan-Beygi, S., Aboonajmi, M., & Lotfi, M. (2017). Prediction of Cucumber Acoustic Response, CrispnessIndex and Firmness Using Artificial Neural Networks. Food Science and Technology, 14, 265-276.
Kavdir, I., & Guyer, D. (2002). Apple sorting using artificial neural network and spectral imaging. Transactions of the ASAE, 45(6), 1992-2005.
Khadivi, A., Rezaei, M., Heidari, P., Safari-Khuzani, A., & Sahebi, M. (2019). Morphological and fruit characterizations of common medlar (Mespilus germanica L.) germplasm. Scientia Horticulturae, 252, 38-47.
Khadivi-Khub, A. (2013). Analysis of some technological and physical characters of mandarin (Citrus reticulata) fruit in Iran. ISRN Agronomy, 1-4.
Labuza, P. (1979). A Theoretical Comparison of Losses in Foods under Fluctuating Temperature Sequences. Journal of food science, 44(4), 1162-1168.
Levenspiel, O. (1972). Interpretation of batch reactor data. In Chemical Reaction Engineering (second ed. ed., pp. 41-47). New York.
Maftoonazad, N., & Ramaswamy, H. (2008). Effect of pectin-based coating on the kinetics of quality change associated with stored avocados. Journal of Food Processing and Preservation, 34, 621-643.
Maftoonazad, N., & Ramaswamy, H. (2019). Application and Evaluation of a Pectin-Based Edible Coating Process for Quality Change Kinetics and Shelf-Life Extension of Lime Fruit (Citrus aurantifolium). Coatings, 285, 1-14.
Majidzadeh, H., Emadi, B., & Farzad, A. (2015). Prediction the moisture content of kiwifruit in vacuum drier using artificial neural network. Iranian Food Science and Technology Research Journal, 11(1), 107-117.
Mamashloo, S., Sadeghi Mahoonak, A., Ghorbani, M., Alami, M., & Khomeiri, M. (2012). The evaluation of antioxidant properties and stability of phenolic copmpounds from medlar (Mespilus germanica L.) fruit. Journal of Research and Innovation in Food Science and Technology, 219-228.
Marabi , A., Livings, S., Jacobson, M., & Saguy, I. (2003). Normalized Weibull distribution for modeling rehydration of foods particulates. European Food Research and Technology, 217, 311-318.
Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169-175.
Miraei-Ashtiani, S., Baradaran-Motie, J., Emadi, B., & Aghkhani, M. (2014). Models for predicting the mass of lime fruits by some engineering properties. Journal of Food Science and Technology, 55(11), 3411-3417.
Nannyonga, S., Bakalis, S., Andrews, J., Mugampoza, E., & Gkatzionis, K. (2016). Mathematical modelling of color, texture kinetics and sensory attributes characterisation of ripening bananas for waste critical point determination. Journal of Food Engineering, 205-210.
Nisha, P., Singhal, R., & Pandit, A. (2005). study on degradation kinetics of riboflavin in spinach (Spinacea oleracea L.). Journal of Food Engineering, 67(4), 407-412.
Octavia, L., & Choo, W. (2018). Folate, ascorbic acid, anthocyanin and colour changes in strawberry ( Fragaria × annanasa ) during refrigerated storage. LWT - Food Science and Technology.
Odriozola-Serrano, I., Soliva-Fortuny, R., & Martin-Belloso, O. (2009). Influence of storage temperature on the kinetics of the changes in anthocyanins, vitamin c, and antioxidant capacity in fresh-cut strawberries stored under high-oxygen atmospheres. Journal of Food Science, 74, 184-191.
Oms-Oliu, G., Odriozola-Serrano, I., Soliva-Fortuny, R., & Martin-Belloso, O. (2009). Use of Weibull distribution for describing kinetics of antioxidant potential changes in fresh-cut watermeon. Journal of Food Engineering, 95, 99-105.
Peleg, M. (1988). An empirical model for the description of moisture sorption curves. Journal of Food Engineering, 55, 1084-1087.
Pinheiro, J., Alegria, C., Abreu, M., Gonçalves, E., & Silva, C. (2013). Kinetics of changes in the physical quality parameters of fresh tomato fruits (Solanum lycopersicum, cv. ‘Zinac’) during storage. Journal of Food Engineering, 114, 338–345.
Quevedo , R., Dı´az, O., Ronceros, B., Pedreschi, F., & Aguilera, J. (2009). Description of the kinetic enzymatic browning in banana (Musa cavendish) slices using non-uniform color information fromdigital images. Food Research International, 42, 1309e1314.
Quevedo, R., Dıaz, O., Caqueo, A., Ronceros, B., & Aguilera, J. (2009). Quantification of enzymatic browning kinetics in pear slices using non-homogenous L* color information from digital images. LWT - Food Science and Technology, 42, 1367-1373.
Raftani Amiri, Z., & Akbari, N. (2018). Evaluation of physicochemical and microbiological properties, antioxidant activities and phenolic Compounds of medlar (Mespilus germanica L.) syrup. Food Science and Technology, 15(75), 81-88.
Rashidi, M., & Keshavarzpour, F. (2011). Prediction of tangerine mass based on geometrical properties. Academic Journal of Plant Sciences, 4(4), 98-104.
Remini, H., Mertz, C., Belbahi, A., Achir, N., Dornier, M., & Madani, K. (2015). Degradation kinetic modelling of ascorbic acid and colour intensity in pasteurised blood orange juice during storage. Food Chemistry, 173, 665–673.
Rop , O., Sochor, J., Jurikova, T., Zitka, O., Skutkova, H., Mlcek, J., . . . Kizek, R. (2011). Effect of Five Different Stages of Ripening on Chemical Compounds in Medlar (Mespilus germanica L.). Molecules, 16, 74-91.
Sabbaghi, H., Ziaiifar, A., & Kashaninejad, M. (2019). Degradation kinetic of vitamin C (L-ascorbic acid) during simultaneous infrared dry-blanching and dehydration of apple slices with intermittent heating method. Iranian Food Science and Technology Research Journal, 14(5), 798-802.
Salehi, F., & Kashaninejad, M. (2016). Physicochemical and Rheological Properties of Wild Medlar Concentrate. Food Science and Technology, 13(59), 49-57.
Schouten, R., Fan, S., Verdonk, J., Wang, Y., Kasim, N., Woltering, E., & Tijskens, L. (2018). Mango Firmness Modeling as Affected by Transport and Ethylene Treatments. Frontiers in Plant Science, 9, 1647.
Shin, S., & Bhowmik, S. (1995). Thermal kinetics of color changes in pea puree. Journal of Food engineering, 24(1), 77-86.
Sierra, N., Londoño, A., Gómez, J., Herrera, A., & Castellanos, D. (2019). Evaluation and modeling of changes in shelf life, firmness and color of ‘Hass’ avocado depending on storage temperature. Food Science and Technology International, 25(5), 370-384.
Tavakoli Hashtjin, T., Khosh Taghaza, M., & Gorjian, S. (2014). Modeling of thin-layer drying kinetics of barberry Fruit (Berberis Vulgaris) using artificial neural network. Journal of food science and technology, 45(11), 1-12.
Vahed dehkordi, N., Jahanbakhshian, N., & Hojatoleslami, M. (2018). Kinetics of Qualitative Changes of Hamburger During Frying. Journal of Food Science and Technology, 15(78), 285-294.
Vélez-Rivera, N., Blasco, J., Chanona-Pérez, J., Calderón-Domínguez, G., Perea-Flores, M., Arzate-Vázquez, I., . . . Farrera-Rebollo, R. (2014). Computer Vision System Applied to Classification of “Manila” Mangoes During Ripening Process. Food and Bioprocess Technology, 7(4), 1183–1194.
Weemaes, C., Ooms, V., Van Loey, A., & Hendrickx, M. (1999). Kinetics of Chlorophyll Degradation and Color Loss in Heated Broccoli Juice. Journal of Agricultural and Food Chemistry, 47(6), 2404–2409.
Zheng, H., & Lu, H. (2011). Use of kinetic, Weibull and PLSR models to predict the retention of ascorbic acid, total phenols and antioxidant activity during storage of pasteurized pineapple juice. LWT - Food Science and Technology, 44, 1273-1281.