مدل سازی و مقایسه تغییرات رنگ و چروکیدگی خشک کردن ورقه های نازک چغندرقرمز در خشک کن های مختلف

نویسندگان
1 دانشجوی کارشناسی ارشد فناوری پس از برداشت گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی ساری
2 دانشیار گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی ساری
3 استادیار گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی ساری
چکیده
خشک­کردن یکی از مهم­ترین فرآیندهای پس از برداشت محصولات کشاورزی با هدف افزایش مدت زمان نگهداری می­باشد. پژوهش حاضر به بررسی و مقایسه تغییرات رنگ و چروکیدگی ورقه­های نازک چغندر قرمز در چهار روش مختلف خشک­کردن (جریان هوای گرم، مایکروویو، خلا و انجمادی) پرداخته و روند تغییرات این دو پارامتر با برازش مدل­های مختلف شبیه­سازی شد. آزمایش­ها در خشک­کن­های جریان هوای گرم و خلا در سه سطح دمایی (50، 70 و C°90)، در خشک­کن مایکروویو در سطح توان (180، 360 و W 600) و در خشک­کن انجمادی با دمای C°50- انجام گردید. نتایج بدست آمده در تمامی روش­های مختلف خشک­کردن نشان داد که روند تغییرات شاخص­های روشنایی (L) و زردی (b) نسبت به زمان صعودی و روند تغییرات شاخص قرمزی (a) نزولی بود. کمترین تغییرات پارامتر روشنایی، قرمزی و زردی به میزان 74/0، 23/0 و 03/0 به ترتیب در خشک­کردن انجمادی، مایکروویو و خلا اتفاق افتاد. ­نتایج کلی بدست آمده نشان داد که بالاترین میزان تغییرات رنگ (ΔE) در خشک­کردن با خشک­کن مایکروویو و در توان W 180 به میزان 59/1 و پایین­ترین میزان این پارامتر در خشک­کردن با خشک­کن انجمادی به میزان 76/0 بدست آمد. همچنین تغییرات چروکیدگی نمونه­های چغندرقرمز نشان داد که استفاده از خشک­کن انجمادی سبب کاهش میزان چروکیدگی در حدود 10 تا 25% نسبت به سه روش دیگر خشک­کردن بود. مدل­سازی پارامترهای رنگی و چروکیدگی نشان داد که مدل­های نمایی قابلیت بالاتری در پیش­بینی فرآیند تغییرات رنگ و چروکیدگی دارند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of different drying methods on color and shrinkage parameters in drying of red beetroot

نویسندگان English

Mojtaba Fathabadi 1
Reza Tabatabaee koloor 2
Ali Motevali 3
1 Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 Sari Agricultural Sciences and Natural Resources University, Sari, Iran
3 Sari Agricultural Sciences and Natural Resources University, Sari, Iran
چکیده English

Drying is one of the most important post-harvesting processes with the aim of increasing the storage time. The present study investigates and compares color changes and shrinkage of red beetroot thin layers in four different drying methods (hot air flow, microwave, vacuum and freeze drying). The process of changing these two parameters was simulated by fitting to different models. The experiments were carried out in hot air and vacuum air dryers at three temperature levels (50, 70 and 90 °C), in microwave dryer at a power level of 180, 360 and 600 W, and in a freeze dryer at -50 °C. The results showed that the changes in the brightness index (L) and yellowness (b) relative to the time were increasing and the trend of changes in the red index (a) was decreasing. The slightest changes in the parameters of brightness, redness and yellowness (values is 0.74, 0.23, and 0.03) occurred in freeze drying, microwave and vacuum, respectively. The overall results showed that the highest amount of color change (ΔE) was 1.59 in drying by microwave and at 180 W, and the lowest drying rate was 0.76 in freeze drying. Also, shrinkage changes in sugar beet samples showed that the use of freeze dryer reduced the amount of shrinkage by 10-25% compared to the other three methods of drying. Also, modeling of color parameters and shrinkage showed that exponential models have higher ability to predict the process of color variation and shrinkage.


کلیدواژه‌ها English

Color indices
Shrinkage
Mathematical model
Red beetroot
Drying
[1] Dias, M.G., Camoes, M.F.G.F.C., Oliveira, L., 2009. Carotenoids in traditional Portuguese fruits and vegetables. Food Chemistry 113, 808–815.
[2] Atamanova, A., Brezhneva, T.A., Slivkin, A.I., Nikolaevskii, V.A., Selemenev, V.F Mironenko, N.V., 2005. Isolation of saponins from table beetroot and primary evaluation of their pharmacological activity. Pharmaceutical Chemistry Journal 39 (12): 650-652.
[3] Jastrebova, J., Witthoft, C., Grahn, A., Svensson, U., Jagerstad, M., 2003. HPLC determination of folates in raw and processed beetroots. Food Chemistry 80, 579-588,
[4] Delgado-Vargas, F., Jiménez, A.R. and Paredes-López, O., 2000. Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Critical reviews in food science and nutrition, 40(3), pp.173-289.
[5] Kapadia, G.J., Tokuda, H., Konoshima, T., Nishino, H., 1996. Chemoprevention of lung and skin cancer by Beta vulgaris (beet) root extract. Cancer Letters 100, 211– 2014.
[6] Raupp, D.D.S., Rodrigues, E., Rockenbach, I.I., Carbonar, A., Campos, P.F.D., Borsato, A.V. and Fett, R., 2011. Effect of processing on antioxidant potential and total phenolics content in beet (Beta vulgaris L.). Food Science and Technology, 31(3), pp.688-693.
[7] Ghorbani Hasan Saraei, A., Shahidi, S.A., Mohebbi, M., Moaziyan, R. (2016).Modelling Kinetics of Thermal Colour Degradation in Production of Beetroot Juice Concentrate by Various Heating Methods. Journal of Food Technology and Nutrition 13 (2): 87-98.
[8] Passos, M.L., 2000. A review of: Developments in Drying, Vol. 2, Edited by AS Mujumdar and S. Suvachittanont Kasetsart University Press, Bangkok, Thailand 2000. Drying Technology, 18(8), pp.1939-1940.
[9] Ahmed, J., 2011. Drying of vegetables: principles and dryer design. In: Sinha, N.K Hui, Y.H., Ozgul Evranuz, E., Siddiq, M., J.Ahmed (Eds.), Handbook of Vegetables and Vegetable Processing. Wiley-Blackwell publishing, pp. 279-298.
[10] Figiel, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98(4), pp.461-470.
[11] Motevali, A., Minaei, S., Khoshtaghaza, M.H. and Amirnejat, H., 2011. Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices. Energy, 36(11), pp.6433-6441.
[12] Krulis, M., Kühnert, S., Leiker, M. and Rohm, H., 2005. Influence of energy input and initial moisture on physical properties of microwave-vacuum dried strawberries. European Food Research and Technology, 221(6), pp.803-808.
[13] Zhang, M., Tang, J., Mujumdar, A.S. and Wang, S., 2006. Trends in microwave-related drying of fruits and vegetables. Trends in Food Science & Technology, 17(10), pp.524-534.
[14] Litvin, S., Mannheim, C.H. and Miltz, J., 1998. Dehydration of carrots by a combination of freeze drying, microwave heating and air or vacuum drying. Journal of food engineering, 36(1), pp.103-111.
Properties. Journal of Food Engineering, 81(1), pp.88-97.
[15] Motevali, A., Hashemi S. J. 2018. Investigating the drying parameters of Fijou fruit in a freeze dryer. Journal of Innovative Food Technologies 5 (4): 699-713.
[16] Tsuruta, T., Tanigawa, H. and Sashi, H., 2015. Study on shrinkage deformation of food in microwave–vacuum drying. Drying technology, 33(15-16), pp.1830-1836.
[17] Maskan, A., Kaya, S. and Maskan, M., 2002. Effect of concentration and drying processes on color change of grape juice and leather (pestil). Journal of Food Engineering, 54(1), pp.75-80.
[18] Salehi, F., Kashaninejad, M. 2014. Effects of Drying Methods and Conditions on Rheology and Texture of Basil Seed Gum. Journal of Innovative Food Technologies, 1 (2), 39-48.
[7] Ghorbani Hasan Saraei, A., Shahidi, S.A., Mohebbi, M., Moaziyan, R. (2016).Modelling Kinetics of Thermal Colour Degradation in Production of Beetroot Juice Concentrate by Various Heating Methods. Journal of Food Technology and Nutrition 13 (2): 87-98.
[20] Rasouli, M., Seiiedlou, S. 2012. A Study of the Shrinkage Changes and Mathematical Modeling of Garlic (Allium sativumL.) During Convective Drying. Journal of Agricultural machinery, 2 (1): 67-73.
[21] Nagwekar, N., Tidke, V. and Thorat, B.N. 2017. Microbial and biochemical analysis of dried fish and comparative study using different drying methods. Drying Technology, 35(12), pp.1481-1491.
[22] Sette, P., Salvatori, D. and Schebor, C., 2016. Physical and mechanical properties of raspberries subjected to osmotic dehydration and further dehydration by air-and freeze-drying. Food and Bioproducts Processing, 100, pp.156-171.
[23] Topuz, A., Hao, F., Mosbah, K. 2009. The effect of drying method and storage on color characteristics of paprika. LWT-Food Science and Technology, 41, 9117-9173.
[24] Tahmasebi-Pour, M., Dehghannya, J., Seiiedlou-Heris, S.S. 2017. Ghanbarzadeh, B. 2017. Shrinkage empirical modeling during drying of grapes pretreated with ultrasound and carboxymethyl cellulose. JFST, 65, 14: 19-23.
[25] Yang, X.H., Deng, L.Z., Mujumdar, A.S., Xiao, H.W., Zhang, Q. and Kan, Z., 2018. Evolution and modeling of colour changes of red pepper (Capsicum annuum L.) during hot air drying. Journal of Food Engineering, 231, pp.101-108.
[26] Chunthaworn, S., Achariyaviriya, S., Achariyaviriya, A. and Namsanguan, K., 2012. Color kinetics of longan flesh drying at high temperature. Procedia Engineering, 32: 104-111.
[27] Khorshidi, Y., Kalantari, D., Asghari, A. 2017. Investigating the Influence of Drying Temperature and Air Flow Velocity on Some Qualitative Specifications of the Sliced Pear during Drying and Employment of Image Processing Technique, Research and Innovation in Food Science and Technology, 6 (1), 87-102.
[28] Farzan E, Rahimi M R, Madadi Avargani V. 2017. Drying kinetic and shrinkage study of a Hawthorn sample in a vibro fluidized bed dryer using an adsorption system in order to control of inlet air humidity. Journal of Innovative Food Technologies 5 (1), 107-122.
[29] Hamdami, N. 2009. Study of numerical and experimental apple drying processes associated with using convective dryers, MSc Thesis, Tabriz University, Tabriz, Iran.
[30] Hafezi, N., Sheikhdavoodi, M.J., and Sajadieh, M.N. 2015. The effect of drying kinetic on shrinkage and color of potato slice in the vaccume-infrared drying method. International Journal of Agricultural and Food Research, 4(1): 24-31.
[31] Naghavi E, Dehghannya J, Ghanbarzadeh B, Rezaei-Mokarram R. Empirical shrinkage modeling of potato strips pretreated with ultrasound and drying during deep-fat frying. Iranian Journal of Nutrition Sciences & Food Technology. 2013; 8 (3): 99-111.
[32] Malekghasemi A, Sadeghi Mahoonak A, Ghorbani M, Alami M, Maghsoudlou Y. 2014. The effect of cooking method on antioxidant activity and betalain content of red beet. Journal of Innovative Food Technologies, 1 (4), 29-36.
[33] Escribano, J., Gandía-Herrero, F., Caballero, N. and Pedreño, M.A., 2002. Subcellular localization and isoenzyme pattern of peroxidase and polyphenol oxidase in beet root (Beta vulgaris L.). Journal of Agricultural and Food Chemistry, 50(21), pp.6123-6129.
[34] Chandran, J., Nisha, P., Singhal, R.S. and Pandit, A.B., 2014. Degradation of colour in beetroot (Beta vulgaris L.): a kinetics study. Journal of food science and technology, 51(10), 2684- 2678.
[35] Gokhale, S.V. and Lele, S.S., 2011. Dehydration of red beet root (Beta vulgaris) by hot air drying: process optimization and mathematical modeling. Food Science and Biotechnology, 20(4), p.955.
[36] Von Elbe, J.H., Schwartz, S.J. and Hildenbrand, B.E., 1981. Loss and regeneration of betacyanin pigments during processing of red beets. Journal of Food Science, 46 (6), 1715-1713.
[37] Abbasi, S., Mousavi, S.M. and Mohebbi, M., 2011. Investigation of changes in physical properties and microstructure and mathematical modeling of shrinkage of onion during hot air drying.
[38] Mehryar E, Sadeghi M, Razavi S J, Forghani E. Qualitative Indices of Istamaran Date Variety Affected by Various Drying Methods. JCPP. 2015; 5 (16): 305-313
[39] Noori M., Kashaninejad M., Daraei Garme khani A., M. Bolandi. 2013. Optimization of drying process of parsley using the combination of hot air and microwave methods. Electronic journal of food process and preservation, 4 (2), 103-122.
[40] Krokida, M.K. and Maroulis, Z.B., 1997. Effect of drying method on shrinkage and porosity. Drying technology, 15(10), pp.2441-2458.
[41] Krokida, M.K., Karathanos, V.T. and Maroulis, Z.B., 1998. Effect of freeze-drying conditions on shrinkage and porosity of dehydrated agricultural products. Journal of Food Engineering, 35(4), pp.369-380.