تأثیر فرایند خشک کردن پاششی بر خواص فیزیکی شیمیایی پودر نعناع‌ فلفلی

نویسندگان
1 دانش آموخته کارشناسی ارشد، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز، تبریز
2 استاد تکنولوژی مواد غذایی، گروه علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز، تبریز
3 عضو هیات علمی گروه پژوهشی مواد غذایی، پژوهشکده غذایی و کشاورزی، پژوهشگاه استاندارد، کرج
چکیده
نعناع ‌فلفلی گیاهی بسیار معطر، خنک‌کننده، با طعم نافذ نعناع و منتول و دارای ترکیبات فنلی( فلاوونوئیدها، تانن‌ها، آنتوسیانین‌ها) متعددی است که مهم­ترین آنتی اکسیدان‌های طبیعی محسوب می­شوند. فرایند ریزپوشانی، ماده‌ درونی (فعال) را از شرایط محیطی نامطلوب مانند تأثیرات نور، رطوبت و اکسیژن حفظ کرده، مانعی بین مواد زیست فعال حساس و محیط بیرونی فراهم می‌آورد. هدف از این پژوهش، تولید پودر عصاره نعناع ‌فلفلی با استفاده از خشک‌کن پاششی با کاربرد مالتودکسترین با معادل دکستروز DE=18-20 به عنوان ماده حامل، به منظور بررسی اثر شرایط مختلف خشک کردن (دمای هوای ورودی 140، 160 و Cº180 و غلظت ماده حامل 10، 20 و 30 درصد وزنی-وزنی عصاره) بر خواص فیزیکی شیمیایی و کیفیت پودر حاصل بود. نتایج نشان داد که با افزایش دما و غلظت مالتودکسترین بازده تولید، حلالیت پودر و شاخصه های رنگی L* و Hue پودر افزایش یافت. درحالی­که رطوبت، فعالیت آبی، قابلیت جذب رطوبت، نم‌پذیری و شاخصه های رنگی chroma، a* و b* کاهش یافت. نتیجه­گیری کلی حاکی از آن بود که دمای ورودی Cº 160 و غلظت ماده حامل 20% به عنوان شرایط بهینه فرایند خشک کردن پاششی عصاره نعناع فلفلی در خشک­کن پاششی بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of spray drying on physicochemical characteristics and quality of peppermint powder

نویسندگان English

Razieh Nikjoo 1
Seyed Hadi Peighambardoust 2
Aref Olad Ghaffari 3
1 MSc graduated, Department of Food Science, College of Agriculture, University of Tabriz, Tabriz
2 Professor of Food Technology, Department of Food Science, College of Agriculture, University of Tabriz, Tabriz
3 Academic staff member of Food Research Group, Food and Agriculture Research Department, Standard Research Institute, Karaj
چکیده English

Peppermint is a very aromatic herbal plant with mouth cooling effect, having pungent mint and menthol flavor. It has many phenolic compounds (flavonoids, tannins, anthocyanin) which are considered as natural antioxidants. The aim of this study was to investigate the influence of different concentrations of maltodextrin and inlet air temperature on some properties of encapsulated peppermint extract. Spray drying is the most common and economical method of microencapsulation. In the current project, the impact of three different inlet air temperatures (140, 160 and 180 °C) and maltodextrin (DE=20-18) concentrations (10, 20 and 30%) on production efficiency, moisture content, water activity, solubility, hygroscopicity, wettability and color parameters of spray dried peppermint extract powder were investigated. The results showed that increasing inlet air temperature and maltodextrin concentration led to increase in the production yield, powder solubility, L* and Hue parameters. While moisture content, water activity, hygroscopicity, wettability, chroma, a* and b* parameters were decreased. In conclusion, inlet temperature of 160 °C and maltodextrin concentration of 20% considered as optimum conditions maintaining desirable properties of peppermint extract powder during spray drying process

کلیدواژه‌ها English

Spray drying
Physicochemical properties
Maltodextrin
Microencapsulation
Peppermint
[1] Tyler V.E., Brady L.R. & Robbers, J.E. (1988). Pharmacognosy (9th ed.). Lee & Febiger, Philadelphia, pp. 113-119.
[2] Bradley P.R. (ed.) (1992). British herbal compendium: a handbook of scientific information on widely used plant drugs, Vol 1. British Herbal Medicine Association, Bournemouth.
[3] Leung A.Y. & Foster S. (1996). Encyclopedia of common natural used in food, drug and cosmetics (2nd ed). Wiley, New York.
[4] Wichtl M. & Bisset N.D. (eds.) (1994). Herbal drugs and phytopharmaceuticals. Medpharm, Stuttgart.
[5] Katikova Olu, IaV K, Yagudina RI, Tishkin VS (2001). Effect of plant preparations on lipid peroxidation parameters in acute toxic hepatitis. Voprosy Medit︠s︡inskoĭ Khimii 47(6): 593–598.
[6] Dragland S., Senoo H., Wake K., Holte K. & Blomhoff R. (2003). Several culinary and medicinal herbs are important sources of dietary antioxidants. The Journal of Nutrition 133(5): 1286–1290.
[7] Ka M.H., Choi E.H., Chun H.S. & Lee K.G. (2005). Antioxidative activity of volatile extracts isolated from Angelica tenuissimae roots, peppermint leaves, pine needles, and sweet flag leaves. Journal of Agricultural and Food Chemistry 53(10): 4124–4129.
[8] Lopez V., Martin S., Gomez-Serranillos M.P., Carretero M.E, Jager A.K. & Calvo M.I. (2010). Neuroprotective and neurochemical properties of mint extracts. Phytotherapy Research 24(6): 869-874.
[9] Shahidi F. & Han X.Q. (1993). Encapsulation of food ingredients. Critical Review in Food Science & Nutrition 33: 501-547.
[10] Goula A.M. & Adamopoulos K.G. (2008). Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: I. Drying kinetics and product recovery. Drying Technology, 26: 714-725.
[11] Goula A.M. & Adamopoulos K.G. (2008). Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: II. Powder properties. Drying Technology, 26: 726-737.
[12] Tonon R.V. Barbet C. & Hubinger M.D. (2008). Influence of process conditions on the physicochemical properties of acid (Euterpe Oleraceae Mart) powder produced by spray drying. Journal of Food Engineering 88: 411-418.
[13] Cano-Chauca M., Stringheta P.C., Ramos A.M. & Cal-Vidal J. (2005). Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science and Emerging Technologies 6: 420 – 428.
[14] Cai Y.Z. & Corke H. (2000). Production and properties of spray-dried Amaranthus betacyanin pigments. Journal of Food Science 65(7): 1248–1252.
[15] Fuchs M., Turchiuli C., Bohin M., Cuvelier M.E., Ordonnaud C., Peyrat-Maillard M.N. & Dumoulin E. (2006). Encapsulation of oil in powder using spray drying and fluidized bed agglomeration. Journal of Food Engineering 75: 27-35.
[16] Quek S.Y., Chok N.K. & Swedlund P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing 46: 386–392.
[17] Abadio F.D.B., Domingues A.M., Borges S.V. & Oliveira V.M. (2004). Physical properties of powdered pineapple (Ananas comosus) juice – effect of maltodextrin concentration and atomization speed. Journal of Food Engineering, 64: 285–287.
[18] Grabowski J.A., Truong V.D. & Daubert C.R. (2006). Nutritional and rheological characterization of spray dried sweet potato powder. LWT-Food Science and Technology 41: 206–216.
[19] Mishra P., Mishra S. & Mahanta C.L. (2013). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of Amla (Emblica officinalis) juice powder. Food and Bioproducts Processing 92(3): 252–258.
[20] Kha T.C., Nguyen M.H. & Roach P.D. (2010). Effect of spray drying conditions on the physicochemical and antioxidant properties of Gac (Momordica cochinchinensis) fruit aril powder. Journal of Food Engineering 98: 385–392.
[21] Goula A.M. & Adamopoulos K.G. (2004). Influence of spray drying conditions on residue accumulation-Simulation using CFD. Drying Technology 22(5): 1107-1128
[22] Fazaeli M., Emam-djomeh Z., Kalbasi A. & Omid M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing 90: 667-675.
[23] Goula A.M. & Adamopoulos K.G. (2010). A new technique for spray drying orange juice concentrate. Innovative Food Science and Emerging Technologies 11: 342–351.
[24] Walton D.E. (2000). The morphology of spray-dried particles, a qualitative view. Drying Technology, 18: 1943−1986.
[25] Goula A.M. & Adamopoulos K.G. (2005). Spray drying of tomato pulp in dehumidified air: П. the effect on powder properties. Journal of Food Engineering: 66: 35-42.
[26] Bhandari B.R. & Hartel R.W. (2005). Phase transitions during food powder production and powder stability. In C. Onwulata (ed.), Encapsulated and powdered foods. Taylor and Francis, New York. pp. 261-291.
[27] Moreira G.E.G., Costa M.G.M., Rodrigues-de Souza C.A., Brito-de S.E., Mediiros-de, D.F.D.M. & Azeredo-de, M.C.H. (2009). Physical properties of spray dried Acerola pomace extract as affected by temperature and drying aids. LWT-Food Science and Technology 42: 641–645.
[28] Schubert H. (1993). Instantization of powdered food products. International Chemical Engineering 33: 28–45.
[29] Jinapong N., Suphantharika M. & Jamnong P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering 84: 194-205.
[30] Knight P.C. (2001). Structuring agglomerated products for improved performance. Powder Technology 119: 14–25.
[31] Santhalakshmy S., Bosco S.J.D., Francis S. & Sabeena M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried Jamun fruit juice powder. Powder Technology 274: 37-43.
[32] Chopda C.A. & Barrett D.M., (2001). Optimization of guava juice and powder production. Journal of Food Processing and Preservation 25 (6): 411–430.
[33] Rodriguez-Hernandez G.R., Gonzalez-Garcia R., Grajales-Lagunes A., Ruiz-Cabrera M.A., Abud-Archila M. (2005). Spray-drying of cactus pear juice (Opuntia streptacantha): effect on the physicochemical properties of powder and reconstituted product. Drying Technology 23(4): 955–973.