مدل سازی نرخ تنفس گلابی رقم درگزی به همراه پوشش اسانس مینایی در طراحی بسته بندی اتمسفر اصلاح شده

نویسندگان
1 دانشجوی دکترا، واحد بین الملل، دانشکده کشاورزی، دانشگاه فردوسی مشهد
2 استاد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
3 استاد گروه باغبانی، دانشکده کشاورزی، دانشگاه فردوسی مشهد
4 گروه افزودنی های مواد غذایی، پژوهشکده علوم و فناوری جهاد دانشگاهی مشهد
چکیده
در این پژوهش تاثیر دما، غلظت اکسیژن و زمان نگهداری روی نرخ تنفس گلابی رقم درگزی بدون پوشش و پوشش دهی شده با اسانس مینای نیشابوری (Sclerorhachis platyrachis) در غلضت های 0، 125، 250 و 500 ppm مورد بررسی قرار گرفت. مدلسازی ریاضی با استفاده از معادله میکائیلز- منتن انجام شده و ثوابت معادله با رابطه آرنیوس توصیف و نرخ تنفس در دماهای مختلف (4، 10 و 25 درجه سانتیگراد) و غلظت های اکسیژن پیش بینی شده و نهایتاً بسته بندی اتمسفر اصلاح شده (MAP) جهت افزایش انبارمانی گلابی رقم درگزی طراحی شد. نتایج نشان داد که تمام فاکتورها بر نرخ تنفس گلابی ها تاثیر گذار بود ولی دمای نگهداری تاثیر چشمگیرتری بر نرخ تنفس داشت. افزایش دما سبب افزایش نرخ تنفس و کاهش اثر مثبت اسانس بر کاهش این پارامتر شد. همچنین براساس نتایج مشخص شد پس از زمان تقریبی 100 ساعت، حالت نسبی تعادلی تنفس ایجاد شد. گلابی رقم درگزی در دمای 4 و 10 درجه سانتی‏گراد در محدوده کسر تنفس هوازی بود. در حالیکه در دمای 25 درجه سانتی‏گراد پس از طی زمان حدود 110 ساعت و رسیدن غلظت گاز دی اکسید کربن به حدود 23 درصد، کسر تنفسی آن از محدوده بحرانی عبور نمود. در نهایت بسته‏بندی حاوی 7/3 % گاز اکسیژن، 1/8 % گاز دی­اکسید کربن و مابقی گاز ازت به عنوان MAP بهینه جهت نگهداری گلابی رقم درگزی پیشنهاد شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modeling respiration characteristics of pear (Dargazi) accompanied by platyrachis S. coating to design modified atmosphere package

نویسندگان English

shima naeemi 1
Mohammad hossein Haddad khodaparast 2
NASER SEDAGHAT 2
MAJID AZIZI 3
FERESHTE HOSSEINI 4
1 Ferdowsi university
2 FERDOWSI UNIVERSITY
3 DEPARTMENT
4 FERDOWSI UNIVERSITY
چکیده English

In this study effect of temperature, O2 concentration and storage time were investigated on respiration rate of uncoated and coated pear (Dargazi Cultivar) using Sclerorhachis platyrachis essential oil of 0, 125, 250, and 500 ppm. Mathematical model using Michaelis–Menten’s equation, with the model constants described by means of an Arrhenius-type relationship was applied to predict respiration rate at various temperatures (4, 10, and 25 ºC) and O2 concentrations to design modified atmosphere packaging (MAP) of pear in order to extend its shelf-life. Results showed that all factors affected respiration rate of the pears but the influence of temperature was most pronounced. Increase in temperature led to increase of respiration rate and reduction of positive effect of essential oil on this parameter reduction. Moreover, after about 100 hours, respiration reached equilibrium. Respiratory quotient of Pears at 4 and 10 °C was on aerobic limit. However, at 25 °C, after 110 hours, and reaching CO2 to 23%, respiratory quotient passed the critical point. Finally, package containing 3.7% O2 + 8.1% CO2 + 88.2% N2 was suggested as an appropriate MAP for storing the pears (Dargazi cultivar).

کلیدواژه‌ها English

Modeling
Modified atmosphere packaging
Pear
Respiration Rate
[1] Moalemiyan, M., & Ramaswamy, H.S., 2012, Quality Retention and Shelf-life Extension in Mediterranean Cucumbers Coated with a Pectin-based Film. Journal of Food Research, 1, 159-164.
[2] Maleki, G., Sedaghat, N., Woltering, E.J., Farhoodi, M., & Mohebbi, M., 2018, Chitosan-limonene coating in combination with modified atmosphere packaging preserve postharvest quality of cucumber during storage. Journal of Food Measurement and Characterization, 12, 1610-162.
[3] Özgen, M., Palta, J.P., Smith, J.D., 2002, Ripeness stage at harvest influences postharvest life of cranberry fruit: physiological and anatomical explanations. Postharvest Biology and Technology, 24, 291–299.
[4] Finnegan, E., Mahajan, P.V., O’Connell, M., Francis, G.A., & O’Beirne, D., 2013, Modelling respiration in fresh-cut pineapple and prediction of gas permeability needs for optimal modified atmosphere packaging. Postharvest Biology and Technology, 79, 47–53.
[5] Sousa-Gallagher, & M.J., Mahajan, P.V., 2013. Integrative mathematical modelling for MAP design of fresh-produce: Theoretical analysis and experimental validation. Food Control, 29, 444-450.
[6] Fonseca, S.C., Oliveira, F.A.R., Frias, J.M., Brecht, J.K., & Chau, K.V., 2002, Modeling respiration rate of shredded Galega kale for development of modified atmosphere packaging, Journal of Food Engineering, 54, 299-307.
[7] Hoseini, S.J., Falaki, M., Aboli, J., 2012, chemical degradation of essential oil of leaf and flower of Sclerorhachis platyrachis of Esfarayen using gas chromatography- mass spectra. Journal of Quantum Chemistry and Spectroscopy, 4, 10-16.
[8] Torrieri, E., Mahajan P.V., Cavella, S., Gallagher, M.D.S., Oliveira, F.A.R. & Masi, P., 2009. Mathematical Modelling of Modified Atmosphere Package: An Engineering Approach to Design Packaging Systems for Fresh-Cut Produce. In: Advances in modeling agricultural systems. Edited by Papajorgji P.J., Pardalos P.M. Springer Science+Business Media, LLC, New York, USA.
[9] Lee, D.S., Haggar, P.E., Lee, J., & Yam, K.L., 1991, Model for fresh produce respiration in modified atmospheres based on principles of enzyme kinetics, Journal of Food Science, 56(6), 1580-1585.
[10] Gomes, M.H., Beaudry, R.M., Almeida, D.P., & Malcata, F.X., 2010, Modelling respiration of packaged fresh-cut ‘Rocha’pear as affected by oxygen concentration and temperature, Journal of Food Engineering, 96(1), 74-79.
[11] Benítez, S., Chiumenti, M., Sepulcre, F., Achaerandio, I., & Pujolá, M. 2012, Modeling the effect of storage temperature on the respiration rate and texture of fresh cut pineapple. Journal of food engineering, 113(4), 527-533.
[12] Rodriguez-Aguilera, R., & Oliveira, J.C., 2009, Review of design engineering methods and applications of active and modified atmosphere packaging systems, Food Engineering Reviews, 1, 66-83.
[13] Magness, J.R., & Diehl, H C., 1929, Investigations on the handling of Bartlett pears from Pacific coast districts (No. 1488-2016-123562).
[14] Tindale, G.B., Trout, S.A., & Huelin, F.E., 1938, Investigations on the storage, ripening and respiration of pears, Journal of The Department of Agriculture, Victoria, 36, 1-36.
[15] Porritt, S.W., 1964, The effect of temperature on postharvest physiology and storage life of pears. Canadian Journal of Plant Science, 44(6), 568-579.
[16] O’Beirne, D., 1991, Modified atmosphere packaging of fruit and vegetables. In: Gormley, T.R. (Ed.), Chilled Foods: The State of the Art. Elsevier Applied Science, Barking, UK, pp. 183–199.
[17] Song, Y., Vorsa, N., & Yam, K.L., 2002, Modeling respiration–transpiration in a modified atmosphere packaging system containing blueberry. Journal of Food Engineering, 53(2), 103-109.
[18] Mahajan, P.V., Oliveira, F.A.R., Sousa, M.J., Fonseca, S.C., & Cunha, L.M., 2006, An interactive design of MA-Packaging for Fresh Produce. In: Hui, Y.H. (ed,) Handbook of food science, technology, and engineering. CRC Press, Taylor & Francis Group, Boca Raton, chapter 119.
[19] Aghdam, M.S., Asghari, M., Babalar, M., & Sarcheshmeh, M.A.A, 2016, Impact of salicylic acid on postharvest physiology of fruits and vegetables. In: Siddiqui, M.W. (ed), Eco-Friendly Technology for Postharvest Produce Quality, Academic Press , pp. 243-268.
[20] Jannati, M., Abdossi, V., & Mashhadi Akbar Boujar, M., 2012, Effect of calcium chloride and thyme essential oils application on some postharvest characteristics of strawberry fruit cv. Selva. Modern Science of Sustainable Agriculture Journal (Special issue for horticultural crops), 2, 25-32.
[21] Fatemi, S., Jafarpour, M., & Eghbalsaied, S., 2012, Study of the effect of Thymus vulgaris and hot water treatment on storage life of orange (Citrus sinensis CV. Valencia). Journal of Medicinal Plants Research, 6(6), 968-971.
[22] Marandi, R.J., Hassani, A., Ghosta, Y., Abdollahi, A.L.I., Pirzad, A., & Sefidkon, F., 2011, Improving postharvest quality of table grape cv.“rish baba” using Thymus kotschyanus and Carum copticum essential oils, Journal of Food Safety, 31(1), 132-139.
[23] Guerzoni, M.E., Gardini, F., Corbo, M.E., Lanciotti, R., & Sinigaglia, M., 1997. Modelling of growth of microorganisms on minimally processed fruits and vegetables in relation to technological and environmental conditions. In: Proceeding of Joint Workshop COST 914-COST 915 ‘‘Nonconventional Methods for the Control of Postharvest Disease and Microbiological Spoilage’’, pp. 15–20.
[24] Peppelenbos, H.W., & van't Leven, J., 1996, Evaluation of four types of inhibition for modelling the influence of carbon dioxide on oxygen consumption of fruits and vegetables. Postharvest Biology and Technology, 7(1-2), 27-40.
[25] McLaughlin, C. P., & O'beirne, D., 1999. Respiration rate of a dry coleslaw mix affected by storage temperature and respirator. Journal of Food Science, 64, 116-119.
[26] Exama, A., Arul, J., Lencki, R., Lee, L.Z. & Toupin, C., 1993, Suitability of plastic films for modified atmosphere packaging of fruits and vegetables. Journal of Food Science, 58, 1365-1370.
[27] Jacxsens, L., Devlieghere, F., De Rudder, T., & Debevere, J., 2000, Designing equilibrium modified atmosphere packages for fresh-cut vegetables subjected to changes in temperature. LWT-Food Science and Technology, 33(3), 178-187.
[28] Phillips, C., 1996, Review: Modified Atmosphere Packaging and its effects on the microbiological quality and safety of produce. International Journal of Food Science & Technology, 31, 463-479.
[29] Artés, F., Villaescusa, R., & Tudela, J.A., 2000b, Modified atmosphere packaging of pomegranate. Journal of Food Science, 65(7), 1112–1116.
[1] Moalemiyan, M., & Ramaswamy, H.S., 2012, Quality Retention and Shelf-life Extension in Mediterranean Cucumbers Coated with a Pectin-based Film. Journal of Food Research, 1, 159-164.
[2] Maleki, G., Sedaghat, N., Woltering, E.J., Farhoodi, M., & Mohebbi, M., 2018, Chitosan-limonene coating in combination with modified atmosphere packaging preserve postharvest quality of cucumber during storage. Journal of Food Measurement and Characterization, 12, 1610-162.
[3] Özgen, M., Palta, J.P., Smith, J.D., 2002, Ripeness stage at harvest influences postharvest life of cranberry fruit: physiological and anatomical explanations. Postharvest Biology and Technology, 24, 291–299.
[4] Finnegan, E., Mahajan, P.V., O’Connell, M., Francis, G.A., & O’Beirne, D., 2013, Modelling respiration in fresh-cut pineapple and prediction of gas permeability needs for optimal modified atmosphere packaging. Postharvest Biology and Technology, 79, 47–53.
[5] Sousa-Gallagher, & M.J., Mahajan, P.V., 2013. Integrative mathematical modelling for MAP design of fresh-produce: Theoretical analysis and experimental validation. Food Control, 29, 444-450.
[6] Fonseca, S.C., Oliveira, F.A.R., Frias, J.M., Brecht, J.K., & Chau, K.V., 2002, Modeling respiration rate of shredded Galega kale for development of modified atmosphere packaging, Journal of Food Engineering, 54, 299-307.
[7] Hoseini, S.J., Falaki, M., Aboli, J., 2012, chemical degradation of essential oil of leaf and flower of Sclerorhachis platyrachis of Esfarayen using gas chromatography- mass spectra. Journal of Quantum Chemistry and Spectroscopy, 4, 10-16.
[8] Torrieri, E., Mahajan P.V., Cavella, S., Gallagher, M.D.S., Oliveira, F.A.R. & Masi, P., 2009. Mathematical Modelling of Modified Atmosphere Package: An Engineering Approach to Design Packaging Systems for Fresh-Cut Produce. In: Advances in modeling agricultural systems. Edited by Papajorgji P.J., Pardalos P.M. Springer Science+Business Media, LLC, New York, USA.
[9] Lee, D.S., Haggar, P.E., Lee, J., & Yam, K.L., 1991, Model for fresh produce respiration in modified atmospheres based on principles of enzyme kinetics, Journal of Food Science, 56(6), 1580-1585.
[10] Gomes, M.H., Beaudry, R.M., Almeida, D.P., & Malcata, F.X., 2010, Modelling respiration of packaged fresh-cut ‘Rocha’pear as affected by oxygen concentration and temperature, Journal of Food Engineering, 96(1), 74-79.
[11] Benítez, S., Chiumenti, M., Sepulcre, F., Achaerandio, I., & Pujolá, M. 2012, Modeling the effect of storage temperature on the respiration rate and texture of fresh cut pineapple. Journal of food engineering, 113(4), 527-533.
[12] Rodriguez-Aguilera, R., & Oliveira, J.C., 2009, Review of design engineering methods and applications of active and modified atmosphere packaging systems, Food Engineering Reviews, 1, 66-83.
[13] Magness, J.R., & Diehl, H C., 1929, Investigations on the handling of Bartlett pears from Pacific coast districts (No. 1488-2016-123562).
[14] Tindale, G.B., Trout, S.A., & Huelin, F.E., 1938, Investigations on the storage, ripening and respiration of pears, Journal of The Department of Agriculture, Victoria, 36, 1-36.
[15] Porritt, S.W., 1964, The effect of temperature on postharvest physiology and storage life of pears. Canadian Journal of Plant Science, 44(6), 568-579.
[16] O’Beirne, D., 1991, Modified atmosphere packaging of fruit and vegetables. In: Gormley, T.R. (Ed.), Chilled Foods: The State of the Art. Elsevier Applied Science, Barking, UK, pp. 183–199.
[17] Song, Y., Vorsa, N., & Yam, K.L., 2002, Modeling respiration–transpiration in a modified atmosphere packaging system containing blueberry. Journal of Food Engineering, 53(2), 103-109.
[18] Mahajan, P.V., Oliveira, F.A.R., Sousa, M.J., Fonseca, S.C., & Cunha, L.M., 2006, An interactive design of MA-Packaging for Fresh Produce. In: Hui, Y.H. (ed,) Handbook of food science, technology, and engineering. CRC Press, Taylor & Francis Group, Boca Raton, chapter 119.
[19] Aghdam, M.S., Asghari, M., Babalar, M., & Sarcheshmeh, M.A.A, 2016, Impact of salicylic acid on postharvest physiology of fruits and vegetables. In: Siddiqui, M.W. (ed), Eco-Friendly Technology for Postharvest Produce Quality, Academic Press , pp. 243-268.
[20] Jannati, M., Abdossi, V., & Mashhadi Akbar Boujar, M., 2012, Effect of calcium chloride and thyme essential oils application on some postharvest characteristics of strawberry fruit cv. Selva. Modern Science of Sustainable Agriculture Journal (Special issue for horticultural crops), 2, 25-32.
[21] Fatemi, S., Jafarpour, M., & Eghbalsaied, S., 2012, Study of the effect of Thymus vulgaris and hot water treatment on storage life of orange (Citrus sinensis CV. Valencia). Journal of Medicinal Plants Research, 6(6), 968-971.
[22] Marandi, R.J., Hassani, A., Ghosta, Y., Abdollahi, A.L.I., Pirzad, A., & Sefidkon, F., 2011, Improving postharvest quality of table grape cv.“rish baba” using Thymus kotschyanus and Carum copticum essential oils, Journal of Food Safety, 31(1), 132-139.
[23] Guerzoni, M.E., Gardini, F., Corbo, M.E., Lanciotti, R., & Sinigaglia, M., 1997. Modelling of growth of microorganisms on minimally processed fruits and vegetables in relation to technological and environmental conditions. In: Proceeding of Joint Workshop COST 914-COST 915 ‘‘Nonconventional Methods for the Control of Postharvest Disease and Microbiological Spoilage’’, pp. 15–20.
[24] Peppelenbos, H.W., & van't Leven, J., 1996, Evaluation of four types of inhibition for modelling the influence of carbon dioxide on oxygen consumption of fruits and vegetables. Postharvest Biology and Technology, 7(1-2), 27-40.
[25] McLaughlin, C. P., & O'beirne, D., 1999. Respiration rate of a dry coleslaw mix affected by storage temperature and respirator. Journal of Food Science, 64, 116-119.
[26] Exama, A., Arul, J., Lencki, R., Lee, L.Z. & Toupin, C., 1993, Suitability of plastic films for modified atmosphere packaging of fruits and vegetables. Journal of Food Science, 58, 1365-1370.
[27] Jacxsens, L., Devlieghere, F., De Rudder, T., & Debevere, J., 2000, Designing equilibrium modified atmosphere packages for fresh-cut vegetables subjected to changes in temperature. LWT-Food Science and Technology, 33(3), 178-187.
[28] Phillips, C., 1996, Review: Modified Atmosphere Packaging and its effects on the microbiological quality and safety of produce. International Journal of Food Science & Technology, 31, 463-479.
[29] Artés, F., Villaescusa, R., & Tudela, J.A., 2000b, Modified atmosphere packaging of pomegranate. Journal of Food Science, 65(7), 1112–1116.