تاثیر فرایند گرمایش اهمیک بر برخی خواص مکانیکی لوبیا سبز

نویسندگان
1 دانشجوی کارشناسی ارشد گروه مکانیک بیوسیستم دانشگاه علوم کشاورزی و منابع طبیعی گرگان
2 دانشیار گروه مکانیک بیوسیستم دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3 استادیار گروه مکانیک بیوسیستم دانشگاه علوم کشاورزی و منابع طبیعی گرگان
چکیده
در ابتدا ، رطوبت دانه و غلاف لوبیا سبز ها تعیین شد و بعد از آن نمونه ها تحت پیش تیمار اهمیک در سطح های معلوم شده قرار گرفتند. به منظور تعیین خواص مکانیکی نمونه هایی که تحت پیش تیمار قرار گرفتند بارگذاری استاتیکی انجام شد. برای این منظور از دستگاه نیرو تغییر شکل استفاده شد. آزمایشها در قالب طرح کاملا تصادفی و آزمایش فاکتوریل انجام شد. تاثیر پارامترهای گرمایش اهمیک در سه سطح زمان 6،3و9 دقیقه و سه سطح ولتاژ 70،50،30 ولت و جهت بارگذاری در یک سطح به صورت عمودی مورد بررسی قرار گرفت. نتایج نشان داد که هر دو فاکتور مورد مطالعه (مدت زمان گرمایش اهمیک و مقدار ولتاژ ) تاثیر معنی داری بر روی نیروی شکست و دیگر خواص مکانیکی داشتند، به طوری که با افزایش مدت زمان گرمایش اهمیک مقدار نیروی شکست و دیگر خواص مکانیکی کاهش یافت. نتیجه بارگذاری بدین صورت بود که در بخش نیروی شکست دانه بیشترین مقدار در زمان 3دقیقه و ولتاژ 30 که مقدار آن N 193/19 است و کمترین مقدار در زمان 9 دقیقه و ولتاژ 70 که مقدار آن برابر استN 58/5. و در بحث انرژی شکست دانه بیشترین و کمترین مقدار آن به ترتیب N 622/21 و N 77/5 که مربوط به ولتاژ 30 ولت و زمان 3 دقیقه برای بیشترین و ولتاژ 70 و زمان 6 دقیقه برای کمترین مقدار بود. در بحث نیروی شکست لوبیا سبز غلاف با دانه بیشترین مقدار مربوط به ولتاژ 30 و زمان 3 دقیقه که برابر با N 13/578 و کمترین آن N 35/72 که مربوط به ولتاژ 70 و زمان 3 دقیقه بود و همچنین بیشترین و کمترین مقدار انرژی شکست مانند نیروی شکست این نمونه در همین زمان و ولتاژ به ترتیب 49/656 و 38/187 بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of ohmic heating process on some mechanical properties of green beans

نویسندگان English

Arash Rokhbin 1
Mohsen Azadbakht 2
Ali Asghari 3
1 Msc. Student Department of Mechanical Engineering Department Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 Associate Professor Department of Mechanical Engineering Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Assistant Professor Department of Mechanical Engineering Gorgan University of Agriculture and Natural Resources, Gorgan, Iran.
چکیده English

The moisture content of the beans and the pods of the green beans were determined and the samples were then subjected to ohmic pretreatment at the specified levels. For this purpose, force-deformation device was used. Static loading was performed to determine the mechanical properties of the pre-treated specimens. Experiments were carried out in a completely randomized design with factorial experiment. The effect of ohmic heating parameters at three time levels of 3,6 and 9 minutes and three voltage levels of 30,50,70 V and for vertical loading at one surface was investigated. The results showed that both factors (ohmic heating time and voltage value) had a significant effect on fracture force and other mechanical properties, so that with increasing ohmic heat duration the amount of fracture force and other mechanical properties decreased. The result of the loading was that in the fracture force section of the grain the maximum value of 3 minutes was 30 V with a value of 19.193 N and the lowest value was 9 minutes with a voltage of 70 grain equal to 5.58 and in the discussion of grain failure energy the highest and The lowest values ​​were 21.622 N and 5.77 N respectively, which were 30 V and 3 min for maximum and 70 V and 6 min for minimum. In the discussion of the fracture force of green bean pod with grain the highest value was 30 V and 3 min time equal to 578.13 N and 72.35 N 35 min which was 70 V and 3 min time and also the highest and lowest energy The fracture-like fracture force of this sample at the same time and voltage were 656.49 and 187.38, respectively.

کلیدواژه‌ها English

Green beans
Ohmic heating
static loading
failure force
failure energy
[1] Brigide, P., Canniatt-Brazaca, S. G., & Silva, M. O. (2014). Nutritional characteristics of
biofortified common beans. Food Science and Technology, 34(3), 493–500.
[2] Rainey, K. M., & Griffiths, P. D. (2019). Inheritance of Heat Tolerance during
Reproductive Development in Snap Bean (Phaseolus vulgaris L.). Journal of the
American Society for Horticultural Science, 130(5), 700–706.
[3] Muñoz-Perea, C. G., Terán, H., Allen, R. G., Wright, J. L., Westermann, D. T., &
Singh, S. P. (2006). Selection for drought resistance in dry bean landraces and
cultivars.Crop Science, 46(5), 2111–2120.
[4] Acosta-Gallegos, J. A., & Adams, M. W. (1991). Plant traits and yield stability of
dry bean (Phaseolus vulgaris) cultivars under drought stress. The Journal of Agricultural Science, 117(2), 213–219.
[5] Kelly, J. F., Scott, M. K., Henry, G., & Janssen, W. (1992). The nutritional value of
snap beans versus other vegetables. G. Henry and W. Janssen (Tech. Eds.), CIAT
Proceedings of an International Conference on Snap Beans in the Developing World
Held From, 16, 23– 46.
[6] Bargale, P. C., Irundayaraj, J. M., & Marquis, B. (1994). Some mechanical properties
and stress relaxation characteristics of lentils - part II.pdf. Canadian Agricultural
Engineering, 36(4), 251–254.
[7] Lewis, M. J. (1990). Physical properties of foods and food processing systems.
Elsevier.
[8] Sayyah, A. H. A., & Minaei, S. (2004). Behavior of Wheat Kernels under Quasi-static
Loading and its Relation to Grain Hardness. J. Agric. Sci. Technol, 6, 11–19.
[9] Legrand, A., Leuliet, J. C., Duquesne, S., Kesteloot, R., Winterton, P., & Fillaudeau, L.
(2007). Physical, mechanical, thermal and electrical properties of cooked red bean
(Phaseolus vulgaris L.) for continuous ohmic heating process. Journal of Food Engineering, 81(2), 447–458.
[10] Knirsch, M. C., Alves dos Santos, C., Martins de Oliveira Soares Vicente, A. A., & Vessoni Penna, T. C. (2010). Ohmic heating - a review. Trends in Food Science and Technology, 21(9), 436–441.
[11] Sastry, S., Abdelrahim, K., Ramaswamy, H. S., & Marcotte, M. (2014). Ohmic heating
in food processing. CRC press.
[12] Sastry, S. K., & Barach, J. T. (2000). Ohmic and inductive heating. Journal of Food
Science, 65, 42–46.
[13] Castro, I., Teixeira, J. A., Salengke, S., Sastry, S. K., & Vicente, A. A. (2004). Ohmic heating of strawberry products: Electrical conductivity measurements and ascorbic acid degradation kinetics. Innovative Food Science and Emerging Technologies, 5(1), 27–36.
[14] Vikram, V. B., Ramesh, M. N., & Prapulla, S. G. (2005). Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. Journal of Food Engineering, 69(1), 31–40.
[15] Sarang, S., Sastry, S. K., & Knipe, L. (2008). Electrical conductivity of fruits and meats during ohmic heating. Journal of Food Engineering, 87(3), 351–356.
[16] Aydin, C. (2002). Physical properties of hazel nuts. Biosystems Engineering, 82(3), 297–303.
[17] Koyuncu, M. A., Ekinci, K., & Savran, E. (2004). Cracking characteristics of Walnut. Biosystems Engineering, 87(3), 305–311.
[18] Alami, H., khoshtaghaza, MH., Minaei, S. (2009). Determination of mechanical properties of soybean seed in quasi-static loading. Food Science and Technology, 6(2), 113–124.
[19] Nissreen, A.-G. (1998). Modelling textural changes during the hydration process of red beans. Journal of Food Engineering, 38(3), 341–352.
[20] Shitanda, D., Nishiyama, Y., & Koide, S. (2002). Compressive strength properties of rough rice considering variation of contact area. Journal of Food Engineering, 53(1), 53–58.
[21] Golmohammadi, A., Sabouri, P., Mesri, G.T. (2013). Effect of Moisture on Some Mechanical Properties of Three varieties of pistachio. Food Industry Research (Agricultural Knowledge), 23(2).
[22] Zaki-Dizaji, H., Minaei, S. (2007). Determination of some physical and mechanical properties of pea seeds. Food Science and Technology, 4(2), 57–66.