[1] Brigide, P., Canniatt-Brazaca, S. G., & Silva, M. O. (2014). Nutritional characteristics of
biofortified common beans. Food Science and Technology, 34(3), 493–500.
[2] Rainey, K. M., & Griffiths, P. D. (2019). Inheritance of Heat Tolerance during
Reproductive Development in Snap Bean (Phaseolus vulgaris L.). Journal of the
American Society for Horticultural Science, 130(5), 700–706.
[3] Muñoz-Perea, C. G., Terán, H., Allen, R. G., Wright, J. L., Westermann, D. T., &
Singh, S. P. (2006). Selection for drought resistance in dry bean landraces and
cultivars.Crop Science, 46(5), 2111–2120.
[4] Acosta-Gallegos, J. A., & Adams, M. W. (1991). Plant traits and yield stability of
dry bean (Phaseolus vulgaris) cultivars under drought stress. The Journal of Agricultural Science, 117(2), 213–219.
[5] Kelly, J. F., Scott, M. K., Henry, G., & Janssen, W. (1992). The nutritional value of
snap beans versus other vegetables. G. Henry and W. Janssen (Tech. Eds.), CIAT
Proceedings of an International Conference on Snap Beans in the Developing World
Held From, 16, 23– 46.
[6] Bargale, P. C., Irundayaraj, J. M., & Marquis, B. (1994). Some mechanical properties
and stress relaxation characteristics of lentils - part II.pdf. Canadian Agricultural
Engineering, 36(4), 251–254.
[7] Lewis, M. J. (1990). Physical properties of foods and food processing systems.
Elsevier.
[8] Sayyah, A. H. A., & Minaei, S. (2004). Behavior of Wheat Kernels under Quasi-static
Loading and its Relation to Grain Hardness. J. Agric. Sci. Technol, 6, 11–19.
[9] Legrand, A., Leuliet, J. C., Duquesne, S., Kesteloot, R., Winterton, P., & Fillaudeau, L.
(2007). Physical, mechanical, thermal and electrical properties of cooked red bean
(Phaseolus vulgaris L.) for continuous ohmic heating process. Journal of Food Engineering, 81(2), 447–458.
[10] Knirsch, M. C., Alves dos Santos, C., Martins de Oliveira Soares Vicente, A. A., & Vessoni Penna, T. C. (2010). Ohmic heating - a review. Trends in Food Science and Technology, 21(9), 436–441.
[11] Sastry, S., Abdelrahim, K., Ramaswamy, H. S., & Marcotte, M. (2014). Ohmic heating
in food processing. CRC press.
[12] Sastry, S. K., & Barach, J. T. (2000). Ohmic and inductive heating. Journal of Food
Science, 65, 42–46.
[13] Castro, I., Teixeira, J. A., Salengke, S., Sastry, S. K., & Vicente, A. A. (2004). Ohmic heating of strawberry products: Electrical conductivity measurements and ascorbic acid degradation kinetics. Innovative Food Science and Emerging Technologies, 5(1), 27–36.
[14] Vikram, V. B., Ramesh, M. N., & Prapulla, S. G. (2005). Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. Journal of Food Engineering, 69(1), 31–40.
[15] Sarang, S., Sastry, S. K., & Knipe, L. (2008). Electrical conductivity of fruits and meats during ohmic heating. Journal of Food Engineering, 87(3), 351–356.
[16] Aydin, C. (2002). Physical properties of hazel nuts. Biosystems Engineering, 82(3), 297–303.
[17] Koyuncu, M. A., Ekinci, K., & Savran, E. (2004). Cracking characteristics of Walnut. Biosystems Engineering, 87(3), 305–311.
[18] Alami, H., khoshtaghaza, MH., Minaei, S. (2009). Determination of mechanical properties of soybean seed in quasi-static loading. Food Science and Technology, 6(2), 113–124.
[19] Nissreen, A.-G. (1998). Modelling textural changes during the hydration process of red beans. Journal of Food Engineering, 38(3), 341–352.
[20] Shitanda, D., Nishiyama, Y., & Koide, S. (2002). Compressive strength properties of rough rice considering variation of contact area. Journal of Food Engineering, 53(1), 53–58.
[21] Golmohammadi, A., Sabouri, P., Mesri, G.T. (2013). Effect of Moisture on Some Mechanical Properties of Three varieties of pistachio. Food Industry Research (Agricultural Knowledge), 23(2).
[22] Zaki-Dizaji, H., Minaei, S. (2007). Determination of some physical and mechanical properties of pea seeds. Food Science and Technology, 4(2), 57–66.