[1] Blades, M. (1997). Food allergies and intolerances: an update. Nutrition & Food Science, 97(4), 146-151.
[2] Sollid, L. M. (2002). Coeliac disease: dissecting a complex inflammatory disorder. Nature Reviews Immunology, 2(9), 647-657
[3] Fasano, A., Catassi, C. (2008). Celiac disease. New England Journal of Medicine, 367(25), 2419-2426.
[4] Ferguson, A., Gillett, H., Humphreys, K., & Kingstone, K. (1998). Heterogeneity of celiac disease: clinical, pathological, immunological, and genetic. Annals of the New York Academy of Sciences, 859(1), 112-120.
[5] Delcour, J. A., & Hoseney, R. C. (2010). Principles of Cereal Science and Technology. Third Edition. AACCI press. St. Paul, Minnesota.
[6] Gallagher, E., Gormley, T.R., & Arendt, E.K. (2004). Recent advances in the formulation of gluten-free cereal-based products. Trends in Food Science and Technology, 15(3), 143–152.
[7] Lazaridou, A., Duta, D., Papageorgiou, M., Belc, N., & Biliaderis, C. G. (2007). Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. Journal of Food Engineering, 79(3), 1033-1047.
[8] Houben, A., Höchstötter, A., & Becker, T. (2012). Possibilities to increase the quality in gluten-free bread production: an overview. European Food Research and Technology, 235(2), 195-208.
[9] Taylor, J. R., & Emmambux, M. N. (2008). Gluten-free foods and beverages from millets. In Gluten-free cereal products and beverages (pp. 119-V). Academic Press.
[10] Padalino, L., Conte, A., & Del Nobile, M. (2016). Overview on the general approaches to improve gluten-free pasta and bread. Foods, 5(4), 87.
[11] Anton, A. (2008). Improving the nutritional and textural properties of wheat flour tortillas. Cereal research communications, 36(2), 301-311.
[12] Naghipour, F., Habibi Najafi, MB, Karimi, M., Haddad Khodparast, M.H., Sheikholeslami, Z. And the deserters, b. 2013. Investigation of gluten free cake production using sorghum flour and guar and xanthan gums. Journal of Food Science and Technology, Volume 10, Number 4, 139-127 [in Persian].
[13] Khatami. E., Aalami, M., Maghsoudlou, Y and Kadivar, M. 2015. Application of rice and sorghum flour in the formulation of gluten free cake. A thesis of M.Sc. Gorgan University of Agricultural Sciences and Natural Resources [in Persian].
[14] Sumnu, G., Koksel, F., Sahin, S., Basman, A., & Meda, V. (2010). The effects of xanthan and guar gums on staling of gluten‐free rice cakes baked in different ovens. International Journal of Food Science & Technology, 45(1), 87-93.
[15] Preichardt, L. D., Vendruscolo, C. T., Gularte, M. A., & Moreira, A. D. S. (2011). The role of xanthan gum in the quality of gluten free cakes: improved bakery products for coeliac patients. International Journal of Food Science & Technology, 46(12), 2591-2597.
[16] Hojjatoleslami, M., and Azizi, M. H. (2015). Impact of tragacanth and xanthan gums on the physical and textural characteristics of gluten-free cake. Nutrition and Food Sciences Research, 2(2), 29-37.
[17] Herranz, B., Canet, W., Jiménez, M. J., Fuentes, R., & Alvarez, M. D. (2016). Characterisation of chickpea flour‐based gluten‐free batters and muffins with added biopolymers: rheological, physical and sensory properties. International Journal of Food Science & Technology, 51(5), 1087-1098.
[18] Gül, H., Hayit, F., Acun, S., & Tekeli, S. G. (2018). Improvement of Quality Characteristics of Gluten-Free Cookies with the Addition of Xanthan Gum. In “Agriculture for Life, Life for Agriculture” Conference Proceedings (Vol. 1, No. 1, pp. 529-535). Sciendo.
[19] Vidaurre-Ruiz, J., Matheus-Diaz, S., Salas-Valerio, F., Barraza-Jauregui, G., Schoenlechner, R., & Repo-Carrasco-Valencia, R. (2019). Influence of tara gum and xanthan gum on rheological and textural properties of starch-based gluten-free dough and bread. European Food Research and Technology, 1-9.
[20] Ghasemi, A., Khandan, M. S. B., & Ardakani, S. A. Y. (2017). The effect of Persian gums and Tragacanth on texture and sensory characteristics of non-gluten cakes. Journal of Nutrition and Food Security, 2(3), 221-230.
[21] Sufian, A., Alami, M., Sadeghi Mahonak, AR, Ghorbani, M., Ziaiefar, A. M. 2013. Production of gluten free sponge cake and sponge cake using sweet almond meal. Journal of Research and Innovation in Food Science and Technology, 3(2), 196-185 [in Persian].
[22] Abbaszadeh, F., Alami, M., Sadeghi Mahonak, A., and Kashani Nejad, M.2017. Effect of sweet almond protein concentrate and xanthan gum on physicochemical and tissue properties of rice dough and cake. Journal of Modern Food Technologies, 4(15), 108-87 [in Persian].
[23] Talebi, H., and Giafehdavoodi, M.2017. Improving the physicochemical, tissue and sensory properties of gluten-free sponge cake using ultrasonic and soy protein isolates. Iranian Food Science and Technology. 14(69), 195-204 [in Persian].
[24] Jyotsna, R., Soumya, C., Swati, S., & Prabhasankar, P. (2016). Rheology, texture, quality characteristics and immunochemical validation of millet based gluten free muffins. Journal of Food Measurement and Characterization, 10(4), 762-772.
[25] Yıldız, E., Şumnu, S. G., & Şahin, S. (2018). Effects of buckwheat flour, gums and proteins on rheological properties of gluten-free batters and structure of cakes. Quality Assurance and Safety of Crops & Foods, 10(3), 245-254.
[26] Giri, N. A., & Sakhale, B. K. (2019). Development of sweet potato flour based high protein and low calorie gluten free cookies. Current Research in Nutrition and Food Science Journal, 7(2), 427-435.
[27] Rosell, C. M. (2009). Enzymatic manipulation of gluten-free breads. Gluten-free Food Science and Technology, 83-98.
[28] Mehrabanshandi, AS. 2012. Investigation of physicochemical properties of gluten free sponge cake and sponge cake. Master thesis. Gorgan University of Agricultural Sciences and Natural Resources [in Persian].
[29] Moore, M. M., Heinbockel, M., Dockery, P., Ulmer, H. M., & Arendt, E. K. (2006). Network formation in gluten‐free bread with application of transglutaminase. Cereal chemistry, 83(1), 28-36.
[30] Kawamura-Konishi, Y., Shoda, K., Koga, H., & Honda, Y. (2013). Improvement in gluten-free rice bread quality by protease treatment. Journal of cereal science, 58(1), 45-50.
[31] Saeidi, Z., Nasehi, B., & Jooyandeh, H. (2018). Optimization of gluten-free cake formulation enriched with pomegranate seed powder and transglutaminase enzyme. Journal of food science and technology, 55(8), 3110-3118.
[32] Romano, A., Masi, P., Bracciale, A., Aiello, A., Nicolai, M. A., & Ferranti, P. (2018). Effect of added enzymes and quinoa flour on dough characteristics and sensory quality of a gluten-free bakery product. European Food Research and Technology, 244(9), 1595-1604.
[33] Hammes, W. P., & Gänzle, M. G. (1998). Sourdough breads and related products. In Microbiology of fermented foods (pp. 199-216). Springer, Boston, MA.
[34] Nionelli, L., & Rizzello, C. G. (2016). Sourdough-based biotechnologies for the production of gluten-free foods. Foods, 5(3), 65.
[35] Corsetti, A., Gobbetti, M., De Marco, B., Balestrieri, F., Paoletti, F., Russi, L., & Rossi, J. (2000). Combined effect of sourdough lactic acid bacteria and additives on bread firmness and staling. Journal of Agricultural and Food Chemistry, 48(7), 3044-3051.
[36] Gänzle, M. G., Vermeulen, N., & Vogel, R. F. (2007). Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food microbiology, 24(2), 128-138.
[37] Katina, K., Arendt, E., Liukkonen, K. H., Autio, K., Flander, L., & Poutanen, K. (2005). Potential of sourdough for healthier cereal products. Trends in Food Science & Technology, 16(1-3), 104-112.
[38] Thompson, J. M., Waites, W. M., & Dodd, C. E. R. (1998). Detection of rope spoilage in bread caused by Bacillus species. Journal of Applied Microbiology, 85(3), 481-486.
[39] Houben, A., Götz, H., Mitzscherling, M., & Becker, T. (2010). Modification of the rheological behavior of amaranth (Amaranthus hypochondriacus) dough. Journal of Cereal Science, 51(3), 350-356.
[40] Moroni, A. V., Arendt, E. K., & Dal Bello, F. (2011). Biodiversity of lactic acid bacteria and yeasts in spontaneously-fermented buckwheat and teff sourdoughs. Food Microbiology, 28(3), 497-502.
[41] Axel, C., Röcker, B., Brosnan, B., Zannini, E., Furey, A., Coffey, A., & Arendt, E. K. (2015). Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiology, 47, 36-44.
[42] Cappa, C., Lucisano, M., Raineri, A., Fongaro, L., Foschino, R., & Mariotti, M. (2016). Gluten-free bread: Influence of sourdough and compressed yeast on proofing and baking properties. Foods, 5(4), 69.
[43] Bender, D., Fraberger, V., Szepasvári, P., D’Amico, S., Tömösközi, S., Cavazzi, G., ... & Schoenlechner, R. (2018). Effects of selected lactobacilli on the functional properties and stability of gluten-free sourdough bread. European Food Research and Technology, 244(6), 1037-1046.
[44] Gómez, M., & Martínez, M. M. 2016. Changing flour functionality through physical treatments for the production of gluten-free baking goods. Journal of Cereal Science, 67, 68-74.
[45] Sun, Q., Han, Z., Wang, L., & Xiong, L. (2014). Physicochemical differences between sorghum starch and sorghum flour modified by heat-moisture treatment. Food Chemistry, 145, 756-764.
[46] Marston, K., Khouryieh, H., & Aramouni, F. (2016). Effect of heat treatment of sorghum flour on the functional properties of gluten-free bread and cake. LWT-Food Science and Technology, 65, 637-644.
[47] Russo, J. V., & Doe, C. A. (1970). Heat treatment of flour as an alternative to chlorination. International Journal of Food Science & Technology, 5(4), 363-374.
[48] Karimi Abdulmaliki, n. 2016. Effect of heat treatment of chickpea flour on the qualitative properties of gluten free cake based on rice flour. Master thesis. Gorgan University of Agricultural Sciences and Natural Resources.
[49] Bucsella, B., Takács, Á., Vizer, V., Schwendener, U., & Tömösközi, S. (2016). Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours. Food Chemistry, 190, 990-996.
[50] Zavareze, E.R. , & Dias, A. R. G. (2011). Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polymers, 83(2), 317-328.
[51] Mohajer Khorasani, S. Alami, M. Kashaninegad, M. Shahiri Tabarestani, H. 2019. Comparison of the effect of heat-moisture treatment of millet grain and addition of xanthan gum on the characteristics of the batter and physicochemical and sensory properties of gluten-free cake. Journal of Food Science and Technology. 90(16), 229-244 [in Persian].
[52] Karami, F. Ahami M, Sadeghi Mahoonak A, Shahiri tabarestani H. 2019. Effect of heat-moisture treatment of proso millet grain on physicochemical properties of flour and produced cookies. Journal of Food Science and Technology; 16 (88) :185-200.
[53] Chung, H. J., Cho, A., & Lim, S. T. (2012). Effect of heat-moisture treatment for utilization of germinated brown rice in wheat noodle. LWT-Food Science and Technology, 47(2), 342-347.
[54] Vidya, S., Ravi, R., & Bhattacharya, S. (2013). Effect of thermal treatment on selected cereals and millets flour doughs and their baking quality. Food and Bioprocess Technology, 6(5), 1218-1227.
[55] Chung, H. J., Cho, A., & Lim, S. T. (2014). Utilization of germinated and heat-moisture treated brown rices in sugar-snap cookies. LWT-Food Science and Technology, 57(1), 260-266.
[56] Fathi, B., Aalami, M., Kashaninejad, M. and Sadeghi Mahoonak, A. (2016). Utilization of Heat‐Moisture Treated Proso Millet Flour in Production of Gluten‐Free Pound Cake. Journal of Food Quality, 39: 611-619.
[57] Kim, M. J., Oh, S. G., & Chung, H. J. (2017). Impact of heat-moisture treatment applied to brown rice flour on the quality and digestibility characteristics of Korean rice cake. Food Science and Biotechnology, 26(6), 1579-1586.
[58] Wang, H., Johnson, L. A., & Wang, T. (2004). Preparation of soy protein concentrate and isolate from extruded-expelled soybean meals. Journal of the American Oil Chemists' Society, 81(7), 713-717.
[59] Barazandeh, M. 2015. Effect of extrusion process on physicochemical properties of extruded expanded snacks based on corn and millet. Master thesis. Gorgan University of Agricultural Sciences and Natural Resources [In persian].
[60] Fathi, b. 2016. Effect of heat-moisture and extrusion treatments on physicochemical properties of millet flour, pulp and cake. Ph.D. Thesis. Gorgan University of Agricultural Sciences and Natural Resources [in Persian].
[61] Hasanpoor, N., Koochaki, A., Mohebbi, M., Millani,. E. 2016. The Effect of Extruded Sorghum Flour and Hydrocolloids on the Physical and Chemical Properties of Gluten-free Cookie. Journal of Research and Innovation in Food Science and Technology, 6(4), 375-388.
[62] Martínez, M. M., Calviño, A., Rosell, C. M., & Gómez, M. (2014). Effect of different extrusion treatments and particle size distribution on the physicochemical properties of rice flour. Food and Bioprocess Technology, 7(9), 2657-2665.
[63]Jeong, S., Kang, W. S., & Shin, M. (2013). Improvement of the quality of gluten-free rice pound cake using extruded rice flour. Food Science and Biotechnology, 22(1), 173-180.
[64] Gomes, L. D. O. F., Santiago, R. D. A. C., Carvalho, A. V., Carvalho, R. N., Oliveira, I. G. D., & Bassinello, P. Z. (2015). Application of extruded broken bean flour for formulation of gluten-free cake blends. Food Science and Technology, 35(2), 307-313.
[65] Zhang, X., Chen, Y., Zhang, R., Zhong, Y., Luo, Y., Xu, S., ... & Guo, D. (2016). Effects of extrusion treatment on physicochemical properties and in vitro digestion of pregelatinized high amylose maize flour. Journal of Cereal Science, 68, 108-115.
[66] Schubert, H., & Regier, M. (Eds.). (2005). The Microwave Processing of Foods. Taylor & Francis US.
[67] Sultana, B., Anwar, F., & Iqbal, S. (2008). Effect of different cooking methods on the antioxidant activity of some vegetables from Pakistan. International Journal of Food Science & Technology, 43(3), 560-567.
[68] Ashraf, S., Saeed, S. M. G., Sayeed, S. A., & Ali, R. (2012). Impact of microwave treatment on the functionality of cereals and legumes. International Journal of Agriculture and Biology, 14(3).
[69] Mohajer Khorasani, S. 2018. Effect of heat-moisture and microwave treatments on Proso millet grain and evaluation of physicochemical and sensory properties of flour, batter and gluten free cake. Master thesis. Gorgan University of Agricultural Sciences and Natural Resources [in Persian].
[70] Lewandowicz, G., Jankowski, T., & Fornal, J. (2000). Effect of microwave radiation on physico-chemical properties and structure of cereal starches. Carbohydrate Polymers, 42(2), 193-199.
[71] Pinkrova, J., Hubackova, B., Kadlec, P., Prihoda, J., & Bubnik, Z. (2003). Changes of starch during microwave treatment of rice. Czech Journal of Food Sciences-UZPI (Czech Republic).
[72] Anderson, A. K., & Guraya, H. S. (2006). Effects of microwave heat-moisture treatment on properties of waxy and non-waxy rice starches. Food Chemistry, 97(2), 318-323.
[73] Xie, Y., Yan, M., Yuan, S., Sun, S., & Huo, Q. (2013). Effect of microwave treatment on the physicochemical properties of potato starch granules. Chemistry Central Journal, 7(1), 113.
[74] Román, L., Martínez, M. M., Rosell, C. M., & Gómez, M. (2015). Effect of microwave treatment on physicochemical properties of maize flour. Food and Bioprocess Technology, 8(6), 1330-1335.
[75] Pérez-Quirce, S., Ronda, F., Lazaridou, A., & Biliaderis, C. G. (2017). Effect of microwave radiation pretreatment of rice flour on gluten-free breadmaking and molecular size of β-glucans in the fortified breads. Food and Bioprocess Technology, 10(8), 1412-1421.
[76] Žilić, S., Mogol, B. A., Akıllıoğlu, G., Serpen, A., Babić, M., & Gökmen, V. (2013). Effects of infrared heating on phenolic compounds and Maillard reaction products in maize flour. Journal of cereal science, 58(1), 1-7.
[77] Deepa, C., & Hebbar, H. U. (2014). Micronization of maize flour: Process optimization and product quality. Journal of cereal science, 60(3), 569-575.
[78] Swaminathan, I., Guha, M., Hunglur, U. H., & Rao, D. B. (2015). Optimization of infrared heating conditions of sorghum flour using central composite design. Food science and biotechnology, 24(5), 1667-1671.
[79] Deepa, C., Sarabhai, S., Prabhasankar, P., & Hebbar, H. U. (2017). Effect of micronization of maize on quality characteristics of pasta. Cereal chemistry, 94(5), 840-846.
[80] Tsatsaragkou, K., Kara, T., Ritzoulis, C., Mandala, I. & Rosell, C. M. (2017). Improving Carob Flour Performance for Making Gluten-Free Breads by Particle Size Fractionation and Jet Milling. Food and Bioprocess Technology, 10, 831-841.
[81] Létang, C., Samson, M. F., Lasserre, T. M., Chaurand, M. & Abecassis, J. (2002). Production of starch with very low protein content from soft and hard wheat flours by jet milling and air classification. Cereal Chemistry, 79, 535-543.
[82] Majzoobi, M., Imani, B., Sharifi, S., & Farahnaky, A. (2018). The effect of particle size and level of rice bran on the batter and sponge cake properties.
[83] Kim, J. M., & Shin, M. (2014). Effects of particle size distributions of rice flour on the quality of gluten-free rice cupcakes. LWT-Food Science and Technology, 59(1), 526-532.
[84] Trappey, E. F., Khouryieh, H., Aramouni, F., & Herald, T. (2015). Effect of sorghum flour composition and particle size on quality properties of gluten-free bread. Food Science and Technology International, 21(3), 188-202.
[85] Belorio, M., Sahagún, M., & Gómez, M. (2019). Influence of Flour Particle Size Distribution on the Quality of Maize Gluten-Free Cookies. Foods, 8(2), 83.
[86] Pal, P., Kaur, P., Singh, N., Kaur, A., Misra, N. N., Tiwari, B. K., ... & Virdi, A. S. (2016). Effect of nonthermal plasma on physico-chemical, amino acid composition, pasting and protein characteristics of short and long grain rice flour. Food Research International, 81, 50-57.
[87] Pankaj, S. K., Wan, Z., & Keener, K. M. (2018). Effects of cold plasma on food quality: A review. Foods, 7(1), 4.
[88] Thirumdas, R., Sarangapani, C. & Annapure, U. S. (2015). Cold plasma: a novel non-thermal technology for food processing. Food Biophysics, 10, 1-11.
[89] Lee, K. H., Kim, H. J., Woo, K. S., Jo, C., Kim, J. K., Kim, S. H., ... & Kim, W. H. (2016). Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT, 73, 442-447.
[90] Sarangapani, C., Thirumdas, R., Devi, Y., Trimukhe, A., Deshmukh, R. R. & Annapure, U. S. (2016). Effect of low-pressure plasma on physico–chemical and functional properties of parboiled rice flour. LWT-Food Science and Technology, 69, 482-489.
[91] Thirumdas, R., Trimukhe, A., Deshmukh, R. & Annapure, U. (2017). Functional and rheological properties of cold plasma treated rice starch. Carbohydrate polymers, 157, 1723-1731.
[92] Vallons, K. J., & Arendt, E. K. (2009). Effects of high pressure and temperature on buckwheat starch characteristics. European Food Research and Technology, 230(2), 343-351.
[93] Vallons, K. J., Ryan, L. A., Koehler, P., & Arendt, E. K. (2010). High pressure–treated sorghum flour as a functional ingredient in the production of sorghum bread. European Food Research and Technology, 231(5), 711-717.
[94] Hüttner, E. K., Dal Bello, F., & Arendt, E. K. (2010). Fundamental study on the effect of hydrostatic pressure treatment on the bread-making performance of oat flour. European Food Research and Technology, 230(6), 827-835.
[95] Vallons, K. J., Ryan, L. A., & Arendt, E. K. (2011). Promoting structure formation by high pressure in gluten-free flours. LWT-Food Science and Technology, 44(7), 1672-1680.