تأثیر کاربرد پس از برداشت سالیسیلیک اسید، اگزالیک اسید و نیتریک اکسید در بهبود خواص کیفی و افزایش ماندگاری میوه تازه زردآلو رقم « شاهرودی»

نویسندگان
1 دانشجوی کارشناسی ارشد دانشگاه بیرجند
2 دانشیار، گروه علوم باغبانی، دانشگاه بیرجند
3 استادیار،گروه علوم و صنایع غذایی دانشکده بهداشت، دانشگاه علوم پزشکی بیرجند
چکیده
میوه زردآلو جزو محصولات فرازگرا و با میزان تنفس بالا می‌باشد که در مرحله پس از برداشت بسرعت رسیده و ضایعات زیادی دارد و به همین دلیل دارای ماندگاری کوتاهی می‌باشد. لذا استفاده از ترکیب‌های سازگار با محیط زیست جهت تأخیر در روند رسیدگی یکی از روش‌های سالم جهت افزایش ماندگاری و کاهش ضایعات این میوه محسوب می‌شود. از این‌رو تأثیر برخی تیمارهای شیمیایی بر صفات کیفی و ماندگاری میوه زردآلو رقم «شاهرودی» در قالب طرح کاملا تصادفی با 8 تیمار و 4 تکرار انجام شد. تیمارها عبارت‌ بودند از غوطه‌وری میوه در محلول‌هایی جداگانه یا ترکیبی از سالیسیلیک اسید، اگزالیک اسید و نیتریک اکسید به ترتیب با غلظت‌های 2، 2 و1 میلی‌مولار. میوه‌ها سپس بسته‌بندی شده و در دمای 2 درجه سانتی‌گراد و رطوبت نسبی 5 ± 85 درصد منتقل شدند و پس از 4 هفته نگهداری خواص شیمیایی، حسی و کیفی آنها مورد ارزیابی قرار گرفت. نتایج نشان داد بیشترین سفتی بافت میوه در تیمار سالیسیلیک اسید (N46/11) و نیتریک اکسید (N85/9) بدست آمد. مواد جامد محلول نیز در تیمار سالیسیلیک اسید و تیمارهای ترکیبی به ترتیب کمترین مقادیر را دارا بودند. از نظر ارزیابی حسی چشایی، تیمار با سالیسیلیک اسید و نیتریک اکسید به نحو مطلوبی بافت، طعم و ظاهر میوه را حفظ کرد. بیشترین ماندگاری در میوه‌های تیمار شده با سالیسیلیک اسید (50/27روز) و نیتریک اکسید (75/25روز) حاصل شد، در حالی که شاهد فقط 14 روز ماندگاری داشت. به طور کلی می‌توان نتیجه گرفت سالیسیلیک اسید و اکسید نیتریک بهترین تیمارها بودند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of postharvest application of salicylic acid, oxalic acid and nitric oxide on improving qualitative properties and extending the shelf life of fresh apricot fruit cv. ‘Sharoudi’

نویسندگان English

maryam dorostkar 1
farid moradinezhad 2
Elham Ansarifar 3
1 MSc. student University of Birjand
2 Associate Professor, University of Birjand, Faculty of Agricultural Science
3 Assistant Professor, University of Medical Sciences of Birjand
چکیده English

Apricot is a climacteric fruit with high respiration rate, which ripen quickly during the postharvest stage and has a short shelf life. Therefore, the use of environmentally friendly compounds for delaying the ripening process is one of the safe methods for extending the shelf life and reducing the postharvest losses of this fruit. Hence, the effect of some chemical treatments on quality and shelf life of apricot fruit cultivar ‘Shahroudi’ was carried out in a completely randomized design with seven treatments and four replications. The treatments were fruit immersion in individual or combination solutions of salicylic acid, oxalic acid and nitric oxide at concentrations of 2, 2 and 1 mM, respectively. The fruits were then packed and transferred to 2 °C with relative humidity of about 85 ± 5%. After 4 weeks of storage, their chemical, sensorial and qualitative properties were evaluated. The results showed that the highest fruit firmness was obtained in salicylic acid (11.46N) and nitric oxide treatment (9.85N). Soluble solids content had the highest values in salicylic acid and combined treatments, respectively. In terms of organoleptic evaluation, salicylic acid and nitric oxide treatments significantly preserved the texture, taste and appearance of the fruits. The highest shelf life was observed in salicylic acid (27.5 days) and nitric oxide (25.5 days) treated fruits, while it was only 14 days in control. In general, it can be concluded that salicylic acid and nitric oxide were the best treatments.

کلیدواژه‌ها English

antioxidants
apricot
Oxalic acid
Salicylic acid
shelf life
[1] Li, T. S. C., 2008, Vegetables and fruits: nutritional and therapeutic values: CRC Press.
[2] Stanley, J., Marshall, R., Ogwaro, J., Feng, R., Wohlers, M., & Woolf, A. B, 2010. Postharvest storage temperatures impact significantly on apricot fruit quality. ISHS Acta Horticulturae, 880.
[3] Pretel, M.T, Souty, M., & Romojaro, F, 2000. Use of passive and active modified atmosphere packaging to the prolong the postharvest life of three varieties of apricot (Prunus armeniaca L.). European Food Research Technology, 211, 191-198.
[4] Roussos, P. A., Sefferou, V., Denaxa, N.-K., Tsantili, E., & Stathis, V, 2011. Apricot (Prunus armeniaca L.) fruit quality attributes and phytochemicals under different crop load. Scientia Horticulturae, 129, 472-478.
[5] Wang, Z., Ma, L., Zhang, X., Xu, L., Cao, J., & Jiang, W, 2015. The effect of exogenous salicylic acid on antioxidant activity, bioactive compounds and antioxidant system in apricot fruit. Scientia Horticulturae, 181, 113-120.
[6] Wang, Y., Luo, Z., Khan, Z. U., Mao, L., & Ying, T, 2006. Effect of nitric oxide on energy metabolism in postharvest banana fruit in response to chilling stress. Postharvest Biology and Technology, 108, 21-27.
[7] Luo, Z., Chen, C., & Xie, J, 2011. Effect of salicylic acid treatment on alleviating postharvest chilling injury of ‘Qingnai’plum fruit. Postharvest Biology and Technology, 62, 115-120.
[8] Yang, T.-t., Zhu, X., Xiang, Y.-j., & Shu, Z, 2012. Impact of Harvest Maturity on Storage Quality of Apricot Fruits. Modern Food Science and Technology, 7, 044.
[9] Babalar, M., Asghari, M., Talaei, A., & Khosroshahi, A., 2007. Effect of pre-and postharvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chemistry, 105, 449-453.
[10] Moradinezhad, F., & Jahani, M., 2016. Quality improvement and shelf life extension of fresh apricot fruit (Prunus Armeniaca cv. Shahroudi) using postharvest chemical treatments and packaging during cold storage. International Journal of Horticultural Science and Technology, 3, 9-18.
[11] Zheng, X., & Tian, S., 2006. Effect of oxalic acid on control of postharvest browning of litchi fruit. Food Chemistry, 96(4), 519-523.
[12] Martínez‐Esplá, A., Serrano, M. a., Domingo Martínez‐Romero, D., Valero, D., & Zapata, P. J., 2018. Oxalic acid preharvest treatment increases antioxidant systems and improves plum quality at harvest and during postharvest storage. Journal of the Science of Food and Agriculture,99, 235-243.
[13] Corpas, F. J., & Palma, J. M., 2018. NO on/off in fruit ripening. Plant Biology, 20, 805-807.
[14] Zhu, S., Liu, M., & Zhou, J., 2006. Inhibition by nitric oxide of ethylene biosynthesis and lipoxygenase activity in peach fruit during storage. Postharvest Biology and Technology, 42, 41-48.
[15] A. O. A. C., 1980. Officinal methos of analysis, 13th Ed., Washington, D.C.
[16] Chuah, A. M., Lee, Y.-C., Yamaguchi, T., Takamura, H., Yin, L.-J., & Matoba, T., 2008. Effect of cooking on the antioxidant properties of coloured peppers. Food Chemistry, 111, 20-28.
[17] Turkmen, N., Sari, F., & Veliglu, Y, S., 2005. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry, 93, 713- 718
[18] Panou, A. A., Karabagias, I. K., & Riganakos, K. A., 2018. The effect of different gaseous ozone treatments on physicochemical characteristics and shelf life of apricots stored under refrigeration. Journal of Food Processing and Preservation, 42(5).e 13614.
[19] Mandal, D., Pachuau, L., Hazarika, T. K., & Shukla, A. C., 2019. Post-harvest application of salicylic acid enhanced shelf life and maintained quality of local mango cv Rangkuai of Mizoram at ambient storage condition. Environment and Ecology, 36, 1057-1062.
[20] Prasana, V., Prabha, T.N., and Tharanthan, R.N., 2007. Fruit ripening phenomena an overview. Critical Reviews in Food Science and Nutrition, 47, 1-19.
[21] Aghdam, M. S., Asghari, M., Babalar, M., & Sarcheshmeh, M. A. A., 2016. Impact of salicylic acid on postharvest physiology of fruits and vegetables. In Eco-Friendly Technology for Postharvest Produce Quality (pp. 243-268): Elsevier.
[22] Zhu, L. Q., Zhou J., Zhu, S. H. & Guo L. H., 2009. Inhibition of browning on the surface of peach slices by short-term exposure to nitric oxide and ascorbic acid. Food Chemistry, 114, 174–179.
[23] Tareen, M., Abbasi, N. & Hafiz, A., 2012. Effect of salicylic acid treatments on storage life of peach fruits CV. ‘FLORDAKING’. Pakistan Journal of Botany, 44, 119-124.
[24] El-Abbasy, U. K., El-Khalek, A. F. A., & Mohamed, M. I., 2018. Postharvest applications of 1methylcyclopropene and salicylic acid for maintaining quality and enhancing antioxidant enzyme activity of apricot fruits cv. “caninoa” during cold storage . Acta Horticulture, 880, 525-532.
[25] Fattahi, J., Fifall, R., & Babri, M., 2010. Postharvest quality of kiwifruit (Actinidia deliciosa cv. Hayward) affected by pre-storage application of salicylic acid. South Western Journal Horticulture. Biology and Environment, 1, 175-186.
[26] Mo, Y., Gong, D., Liang, G., Han, R., Xie, J., & Li, W., 2008. Enhanced preservation effects of suger apple fruit by salicylic acid treatment during postharvest storage. Journal of the Science of Food and Agriculture, 88, 2693-2699.
[27] Razzaq, K., Khan, A. S., Malik, A. U., Shahid, M., & Ullah, S., 2015. Effect of oxalic acid application on Samar Bahisht Chaunsa mango during ripening and postharvest. Food Science and Technology, 63, 152-160.
[28] Asghari, M.R., Ghafari Baktash, H., & Farokhzad, A. (2018). Changes in quality of apple fruit (cv. Red Delicious) in response to postharvest salicylic acid and nitric oxide treatments. Plant Production Technology, 18(2), 107-124.
[29] Ezzat, A., Ammar, A., Szabo Z. n., Nyeki, J. z., & Holb, I. J., 2017. Postharvest treatments with methyl jasmonate and salicylic acid for maintaining physico-chemical characteristics and sensory quality properties of apricot fruit during cold storage and shelf-life. Polish Journal of Food and Nutrition Sciences, 67, 159-166.
[30] Zheng X., Tian S.H., Meng X., & Li B., 2007. Physiological and biochemical responses in peach fruit to oxalic acid treatment during storage at room temperature. Food Chemistry, 104, 156-162.
[31] Davarynejad, G. H., Zarei, M., Nasrabadi, M. E., & Ardakani, E., 2015. Effects of salicylic acid and putrescine on storability, quality attributes and antioxidant activity of plum cv."Santa Rosa" Journal of Food Science and Technology, 52, 2053-2062.
[32] Patthamakanokporn, O., Puwastien, P., Nitithamyong, A., & Sirichakwal, P. P., 2008. Changes of antioxidant activity and total phenolic compounds during storage of selected fruits. Journal of Food Composition and Analysis, 21, 241-248.
[33] Altunkaya, A., & Gökmen, V., 2008. Effect of various inhibitors on enzymatic browning, antioxidant activity and total phenol content of fresh lettuce (Lactuca sativa). Food Chemistry, 107(3), 1173-1179.
[34] Spinardi A. M. 2005. Effect of harvest date and storage on antioxidant systems in pears. Acta Horticulturae, 682: 655-662
[35] Hernandez J. A., Ferrer M. A., Jimenez A., Barcelo A. R., and Sevilla F. 2001. Antioxidant systems and 02-/ H202production the apoplast of pea leaves. Its relation with salt- induced necrotic lesions in minor veins. Plant Physiol, 127: 827-831
[36] Wolucka B. A., Goossens A., Inzé D. 2005. Methyl jasmonate stimulates the de navo biosynthesis of vitamin C in plant cell suspensions. Journal of Experimental Botany. 56: 2527-2538.
[37] Shakirova F. M., Sakhabutdinova A. R., Brzukova M. V., Fatkhutdinova R. A., and Fatkhutdinova D. R.2003. Changein the hormonal status of Wheat seedlings induced by salicylic acid and salinity. Plant Science, 164: 317-322.
[38] Oz, A.T., Kafkas, E., & Bozdgan, A., 2016. Combined effects of oxalic acid treatment and modified atmosphere packaging on postharvest quality of loquats during storage. Turkish Journal of Agriculture and Forestry, 40, 433-440.
[39] Terefe, N. S., Buckow, R., & Versteeg, C., 2017. Quality-related enzymes in fruit and vegetable products: effects of novel food processing technologies, part 1: high-pressure processing. Critical Reviews in Food Science and Nutrition, 54, 24-63.
[40] Zhua S, Liu M & Zhou J., 2006. Inhibition by nitric oxide of ethylene biosynthesis and lipoxygenase activity in peach fruit during storage. Postharvest Biology and Technology, 42, 41–48.
[41] Simson, S.P., and Straus, M.C., 2010. Post-harvest Technology of Horticultural Crops. Oxford Book. pp: 507.
[42] Babalar, M., Asghari, M., Talaei, A., & Khosroshahi, A., 2007. Effect of pre-and postharvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chemistry, 105, 449-453.
[43] Poole, P. R., & McLeod, L. C., 1994. Development of resistance to picking wound entry Botrytis cinema storage rots in kiwifruit. New Zealand Journal of Crop and Horticultural Science, 22, 387-392.
[44] Aghdam, M. S., Asghari, M., Babalar, M., & Sarcheshmeh, M. A. A. 2016. Impact of salicylic acid on postharvest physiology of fruits and vegetables. In Eco-Friendly Technology for Postharvest Produce Quality (pp. 243-268). Academic Press.
[45] Milosevic, N. & A. J. Slusarenko., 1996. Active oxygen metabolism and lignification in the hypersensitive response in bean. Physiological and Molecular Plant Pathology, 49, 143–157.
[46] Zhang, Y., Chen, K., Zhang, S., & Ferguson, I., 2003. The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biology and Technology, 28, 67-74.
[47] Gimenez, M. J., Serrano, M. a., Valverde, J. M., Martinez Romero, D., Castillo, S., & Valero, D., 2017. Preharvest salicylic acid and acetylsalicylic acid treatments preserve quality and enhance antioxidant systems during postharvest storage of sweet cherry cultivars. Journal of the Science of Food and Agriculture, 97, 1220-1228.