تاثیر پارامتر‌های عملیاتی خشک‌کن بستر فورانی بر خصوصیات فیزیکی پودر شیر

نویسندگان
1 مهندسی شیمی، دانشکده مهندسی، دانشگاه شهید باهنر کرمان
2 بخش علوم و مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان
3 گروه بیوشیمی، دانشکده پزشکی، دانشگاه علوم پزشکی کرمان
چکیده
در این تحقیق اثر دمای هوای ورودی و نیز اثر دبی شیر ورودی بر خصوصیات فیزیکی پودر به‌دست آمده از خشک‌کن بستر فورانی بررسی شد. نمونه‌های شیر در سه سطح دمای هوای ورودی (80، 100 و 120 درجه سلسیوس) و سه سطح دبی شیر ورودی (333/1، 500/2 و 556/3 میلی‌لیتر بر دقیقه) در سامانه بستر فورانی خشک شدند. اثر این عوامل بر خصوصیات فیزیکی (چگالی توده، چگالی ضربه، جریان‌پذیری، رنگ و میزان رطوبت) آنها مورد ارزیابی قرار گرفت. با استفاده از روش سطح پاسخ میزان تاثیرگذاری عامل‌های ذکر شده بر خصوصیات فیزیکی پودر شیر مشخص و مدل‌سازی شد. مقادیر بهینه دمای هوای ورودی و دبی خوراک ورودی به ترتیب معادل 82/93 درجه سلسیوس و 333/1 میلی‌لیتر/دقیقه به‌دست آمد. در شرایط بهینه، مقادیر مطلوب هر یک از خصوصیات فیزیکی پیش‌بینی گردید و با داده‌های تجربی به‌دست آمده در شرایط بهینه ارزیابی شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of operational parameters of spouted bed dryer on the physical properties of milk powder

نویسندگان English

Shahrbanoo Hamedi 1
Hamidreza Akhavan 2
Mohammad Hadi Nematollahi 3
Mohammad Mehdi Afsahi 1
1 Department of Chemical Engineering, Faculty of Engineering, University of Shahid Bahonar
2 Assistant Professor, Department of Food Science and Technology, Faculty of Agriculture, University of Shahid Bahonar
3 Department of Clinical Biochemistry, Faculty of Medical, Kerman University of Medical Sciences
چکیده English

In this study, the effect of the inlet air temperature and milk flow rate on the physical properties of the milk powder obtained from the spouted bed dryer was investigated. Milk samples were dried at three levels of inlet air temperature (80, 100 and 120 C) and three levels of milk flow rate (1.333, 2.500, 3.556 ml/min). The effect of these factors on the physical properties (bulk density, tapped density, flowability, color, and moisture content) of the powders was evaluated. The effects of the mentioned factors on the physical properties of milk powder were determined and modeled using response surface methodology. The optimum inlet air temperature and the milk flow rate was obtained 93.82 C and 1.333 ml/min, respectively. Under these conditions, the desired values for each physical parameter were predicted and compared with the experimental data.

کلیدواژه‌ها English

Drying
Spouted bed
Milk powder
Physical properties
[1] Sulieman, A. M. E., Elamin, O. M., Elkhalifa, E. A., & Laleye, L. (2014). Comparison of physicochemical properties of spray-dried camel’s milk and cow’s milk powder. International Journal of Food Science and Nutrition Engineering, 4, 15-19.
[2] Birchal, V. S., Passos, M. L. (2005). Modeling and simulation of milk emulsion drying in spray dryers. Brazilian Journal of Chemical Engineering, 22(2), 293-302.
[3] Thomas, M. E., Scher, J., Desobry-Banon, S., Desobry, S. (2004). Milk powders ageing: effect on physical and functional properties. Critical Reviews in Food Science and Nutrition, 44(5), 297-322.
[4] Kelly, J., Kelly, P. M., & Harrington, D. (2002). Influence of processing variables on the physicochemical properties of spray dried fat-based milk powders. Le Lait, 82(4), 401-412.
[5] Perazzini, M. T., Freire, F. B., Ferreira, M. C., Freire, J. T. (2018). Stability and performance of a spouted bed in drying skimmed milk: Influence of the cone angle and air inlet device. Drying Technology, 36(3), 341-354.
[6] Ochoa-Martinez, L. A., Brennan, J. G., Niranjan, K. (1993). Spouted bed dryer for liquid foods. Food Control, 4(1), 41-45.
[7] Altieri, G., Di Renzo, G. C., & Genovese, F. (2008). Preliminary results using a new method to optimize a spray dryer process for producing high quality milk powder from cow, goat and she-ass milk concentrates. Journal of Agricultural Engineering, 39(4), 35-41.
[8] Amiri‐Rigi, A., Mohammadifar, M. A., Emam‐Djomeh, Z., Mohammadi, M. (2011). Response surface optimisation of spray dryer operational parameters for low‐phenylalanine skim milk powder. International Journal of Food Science & Technology, 46(9), 1830-1839.
[9] Ogolla, J. A., Kulig, B., Bădulescu, L., Okoth, M. W., Esper, G., Breitenbach, J., Hensel, O., Sturm, B. (2019). Influence of Inlet Drying Air Temperature and Milk Flow Rate on the Physical, Optical and Thermal Properties of Spray-Dried Camel Milk Powders. Food and Bioprocess Technology, 12(5), 751-768.
[10] Habtegebriel, H., Edward, D., Wawire, M., Sila, D., Seifu, E. (2018). Effect of operating parameters on the surface and physico-chemical properties of spray-dried camel milk powders. Food and Bioproducts Processing, 112, 137-149.
[11] Reddy, R. S., Ramachandra, C. T., Hiregoudar, S., Nidoni, U., Ram, J., Kammar, M. (2014). Influence of processing conditions on functional and reconstitution properties of milk powder made from Osmanabadi goat milk by spray drying. Small Ruminant Research, 119(1-3), 130-137.
[12] Nijdam, J. J., & Langrish, T. A. G. (2005). An investigation of milk powders produced by a laboratory-scale spray dryer. Drying Technology, 23(5), 1043-1056.
[13] de Souza Nascimento, B., Freire, F. B., Freire, J. T. (2013). Neuronal and grey modelling of milk drying in spouted bed. The Canadian Journal of Chemical Engineering, 91(11), 1815-1821.
[14] Perazzini, M. T. B., Freire, F. B., Freire, J. T. (2015). Influence of bed geometry on the drying of skimmed milk in a spouted bed. Advances in Chemical Engineering and Science, 5(04), 447.
[15] Kudra, T., Mujumdar, A. S. (2009). Advanced drying technologies. CRC press. New York, USA.
[16] Braga, M. B., Rocha, S. C. (2013). Drying of milk–blackberry pulp mixture in spouted bed. The Canadian Journal of Chemical Engineering, 91(11), 1786-1792.
[17] Yazdanpanah, N., Langrish, T. A. (2011). Crystallization and drying of milk powder in a multiple-stage fluidized bed dryer. Drying Technology, 29(9), 1046-1057.
[18] Jinapong, N., Suphantharika, M., Jamnong, P. (2008). Production of instant soymilk powders by ultrafiltration, spray drying and fluidized bed agglomeration. Journal of Food Engineering, 84(2), 194-205.
[19] Nijdam, J. J., Langrish, T. A. G. (2005). An investigation of milk powders produced by a laboratory-scale spray dryer. Drying Technology, 23(5), 1043-1056.
[20] Westergaard, V. (1983). Milk powder technology: evaporation and spray drying. A/S NIRO Atomizer.
[21] Pathare, P. B., Opara, U. L., Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: a review. Food and Bioprocess Technology, 6(1), 36-60.
[22] Ferreira, S. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandao, G. C., Silva, E.G.P.da, Portugal, L.A., Dos Reis, P.S., Souza, A.S., Dos Santos, W. N. L. (2007). Box-Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta, 597(2), 179-186.
[23] Montgomery, D. C. (2017). Design and analysis of experiments. John Wiley & Sons, USA.
[24] Langrish, T. A. G., Marquez, N., Kota, K. (2006). An investigation and quantitative assessment of particle shape in milk powders from a laboratory-scale spray dryer. Drying Technology, 24(12), 1619-1630.
[25] Passos, M. L., Trindade, A. L. G., d'Angelo, J. V. H., Cardoso, M. (2004). Drying of black liquor in spouted bed of inert particles. Drying Technology, 22(5), 1041-1067.
[26] Ciro-Velásquez, H. J., Cunha, R. L., Menegalli, F. C. (2010). Drying of xanthan gum using a two-dimensional spouted fluidized bed (2DSFB) with inert particles: Performance and rheological considerations. Drying Technology, 28(3), 389-401.
[27] Souza, C. R. F., Oliveira, W. P. (2009). Drying of herbal extract in a draft‐tube spouted bed. The Canadian Journal of Chemical Engineering, 87(2), 279-288.
[28] Sharma, A., Jana, A. H., Chavan, R. S. (2012). Functionality of milk powders and milk‐based powders for end use applications—a review. Comprehensive Reviews in Food science and Food safety, 11(5), 518-528.
[29] Goula, A. M., Adamopoulos, K. G. (2008). Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air: II. Powder properties. Drying Technology, 26(6), 726-737.
[30] Ganesan, V., Rosentrater, K. A., Muthukumarappan, K. (2008). Flowability and handling characteristics of bulk solids and powders–a review with implications for DDGS. Biosystems Engineering, 101(4), 425-435.
[31] Rennie, P. R., Chen, X. D., Hargreaves, C., Mackereth, A. R. (1999). A study of the cohesion of dairy powders. Journal of Food Engineering, 39(3), 277-284.
[32] Fitzpatrick, J. J., Iqbal, T., Delaney, C., Twomey, T., Keogh, M. K. (2004). Effect of powder properties and storage conditions on the flowability of milk powders with different fat contents. Journal of food Engineering, 64(4), 435-444.