مطالعه آزمایشگاهی خشک‌کردن کف‌پوشی گوشت میگو و ارزیابی مدل‌های خشک‌کردن لایه‌نازک آن

نویسندگان
1 گروه بهداشت مواد غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی
2 گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری
3 گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی، آمل، ایران
4 گروه علوم مواد غذایی، دانشگاه کرنل، ایتاکا، آمریکا
چکیده
خشک‌کردن کف‌پوشی فرایندی است که در آن مواد غذایی مایع به‌وسیله ترکیب گاز به داخل آن‌ها به کف پایدار تبدیل‌شده، سپس در دمای نسبتاً پایین خشک می‌شوند. در این پژوهش، اثر دمای خشک‌کردن (50، 60 و 70 درجه سانتی‌گراد) و ضخامت (4 و 8 میلی‌متر) بر سینتیک خشک‌کردن کف‌پوشی میگو بررسی شد. سینتیک خشک‌کردن با ١٢ مدل تجربی و بر اساس چهار شاخص آماری شامل ضریب تبیین (R2)، مجموع مربعات خطا (SSE)، مربع کای (2χ) و ریشه متوسط خطای داده‌ها (RMSE) با هم مقایسه شدند. تغییرات رنگ نیز طی فرایندهای تغلیظ بررسی شد. تغییرات کل رنگ جهت تخمین میزان تخریب رنگ بکار گرفته شد. مدل‌های سینتیکی مرتبه صفر، مرتبه یک و مرکب برای بیان تغییر در پارامترهای رنگ مورداستفاده قرار گرفتند. طبق نتایج به‌دست‌آمده بهترین مدل جهت برازش داده‌های خشک‌کردن هوای داغ، مدل میدلی بود. این مدل‌ها دارای بالاترین ضریب تبیین و کمترین مجذور میانگین مربعات خطا، کای مربع و مجموع مربعات خطا، نسبت به سایر مدل‌ها بودند. نتایج نشان داد که تغییر در مقدار تغییرات کلی رنگ از سینتیک مدل مرکب پیروی می‌کند. این مدل بیان می‌کند که تشکیل رنگ و نابودی رنگ‌دانه در حین فرایند خشک‌کردن کف‌پوشی میگو اتفاق می‌افتند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental study on foam mat drying of shrimp meat and evaluation of thin-layer drying models

نویسندگان English

Shabnam Hamzeh 1
Ali Motamedzadegan 2
Seyed-Ahmad Shahidi 3
Mohammad Ahmadi 1
Joe Regenstein 4
1 Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University
2 Department of Food Science, Sari Agricultural Sciences and Natural Resources University
3 Department of Food Science and Technology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
4 Department of Food Science, Cornell University
چکیده English

The foam mat drying is a process in which liquid food is converted in to stable foam by combining gas into it, and then dried at a relatively low temperature. The effect of drying temperature (50, 60 and 70 °C) and thickness (4 and 8 mm) on foam mat drying kinetics of shrimp under hot-air drying was investigated. The drying curves obtained were processed for drying rates to find the most convenient model among the 12 different expressions proposed by earlier authors. In addition, the various statistical parameters such as: R2, reduced chi-square, SSE and root mean square error (RMSE) were used to determine the quality of the fit. The colour change during concentration processes was investigated. Total colour differences parameter was used to estimate the extent of colour loss. The zero-order, first-order and a combined kinetics model were applied to the changes in colour parameters. Based on the results, Midilli model was found to be the best model fitted to the experimental hot air drying data at all temperature levels. These models exhibited the highest value of R2 and the least RMSE, χ2 and SSE comparing to the other models. Results indicated that variation in TCD followed combined kinetics model. This model implied that the colour formation and pigment destruction occurred during foam mat drying process of shrimp.

کلیدواژه‌ها English

color
foam mat drying
Kinetics
Shrimp
Alinejad, M., Motamedzadegan, A., Rezaei, M. 2016. Functional properties and antioxidant activities of protein hydrolysates from whitecheeck shark (Carcharhinus dussumieri) meat. Food Science and Technology. 13(50): 159-169.
Azizpour, M. 2012. Optimization of Shrimp (Penaeus indicus) Powder Production Conditions by using Foam mat Drying Technique. M.Sc. Thesis. Ferdowsi University of Mashhad.
Hardy, Z. and Jideani, V.A., 2017. Foam-mat drying technology: a review. Critical reviews in food science and nutrition, 57(12), pp.2560-2572.
Alakali, J.S., Kucha, E.I. and Ariahu, C.C., 2010. Drying characteristics of osmo-foam-mat mango pulp. Journal of Agriculture, Biotechnology and Ecology, 3(1), pp.87-98.
Bragadottir, M., Reynisson, E., Þórarinsdóttir, K.A. and Arason, S., 2007. Stability of fish powder made from saithe (Pollachius virens) as measured by lipid oxidation and functional properties. Journal of Aquatic Food Product Technology, 16(1), pp.115-136.
Behnia, A., Karazhiyan, H., Niazmand, R., Mohammadi Nafchi, A. 2014. Effect of Cress seed gum on rheological and textural properties of low-fat yoghurt, Journal of Research and Innovation in Food Science and Technology, 3(3), pp. 255-266.
Onwude, D.I., Hashim, N., Janius, R.B., Nawi, N.M. and Abdan, K., 2016. Modeling the thin‐layer drying of fruits and vegetables: A review. Comprehensive reviews in food science and food safety, 15(3), pp.599-618.
Doymaz, I. and Pala, M., 2003. The thin-layer drying characteristics of corn. Journal of Food Engineering, 60(2), pp.125-130.
Babalis, S.J. and Belessiotis, V.G., 2004. Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of food Engineering, 65(3), pp.449-458.
Menges, H. O., & Ertekin, C. 2006. Mathematical modeling of thin layer drying of golden apples. Journal of Food Engineering, 77, 119–125.
Aghbashlo, M., Kianmerhr, H., & Samimi-Akhijahani, H. 2008. Influence of drying conditions on the effective moisture diffusivity, energy of activation and consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Conversion and Management, 49, 2865–2871.
Doymaz, I., & Ismail, O. 2011. Drying characteristics of sweet cherry. Food and Bioproducts Processing, 89, 31–38.
Singh, N. J., & Pandey, K. R. 2012. Convective air drying characteristics of sweet potato cube (Ipomoea batatas L.). Food and Bioproducts Processing, 90, 317–322.
Vàsquez-Parra, J. E., Ochoa-Martìnez, C. I., & Bustos-Parra, M. 2013. Effect of chemical and physical pretrements on the convective drying of cape gooseberry fruits (physalis peruviana). Journal of Food Engineering, 119, 648–654.
Zhu, A., & Shen, X. 2014. The model and mass transfer characteristics of convection drying of peach slices. International Journal of Heat and Mass Transfer, 72, 347–351.
Seremet, L., Botez, E., Nistor, O., Andronoium, D. G., & Mocanu, G. 2016. Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chemistry, 195, 104–109.
Bahmani, A., Jafari, S. M., Shahidi, S.-A. and Dehnad, D. 2016, Mass Transfer Kinetics of Eggplant during Osmotic Dehydration by Neural Networks. Journal of Food Processing and Preservation, 40: 815–827.
Naghizadeh Raeisi, S., Ghorbani Hasan-Saraei, A., Maghsoudlou, D. 2017, Thin layer drying of plum fruit using hot air and microwave: Effect of experimental parameters on drying kinetics, Food processing and production, Vol. 7, No. 3: 23-36 (in Persian).
Posomboon, W. 1998. Processing effect on quality of dried shrimp. M. Eng. Thesis, Asian Institute of Technology, Bangkok, Thailand.
Niamnuy, C., Devahastin, S. and Soponronnarit, S., 2007. Quality changes of shrimp during boiling in salt solution. Journal of food science, 72(5), pp.S289-S297.
Koocheki, A., Mortazavi, S.A., Shahidi, F., RAZAVI, S.M., Kadkhodaee, R. and Milani, J.M., 2010. Optimization of mucilage extraction from Qodume shirazi seed (Alyssum homolocarpum) using response surface methodology. Journal of Food Process Engineering, 33(5), pp.861-882.
Bostan, A., Razavi, S.M. and Farhoosh, R., 2010. Optimization of hydrocolloid extraction from wild sage seed (Salvia macrosiphon) using response surface. International Journal of Food Properties, 13(6), pp.1380-1392.
Karazhiyan, H., Razavi, S.M. and Phillips, G.O., 2011. Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocolloids, 25(5), pp.915-920.
Razi, S.M., Motamedzadegan, A., Shahidi, A. and Rashidinejad, A., 2018. The effect of basil seed gum (BSG) on the rheological and physicochemical properties of heat-induced egg albumin gels. Food Hydrocolloids, 82, pp.268-277.
Farajzadeh, F., Motamedzadegan, A., Shahidi, S.A. and Hamzeh, S., 2016. The effect of chitosan-gelatin coating on the quality of shrimp (Litopenaeus vannamei) under refrigerated condition. Food Control, 67, pp.163-170.
Aral, S. and Beşe, A.V., 2016. Convective drying of hawthorn fruit (Crataegus spp.): effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food chemistry, 210, pp.577-584.
Yaldiz, O., Ertekin, C., and Uzun, H. I. 2001. Mathematical modeling of thin layer drying of sultana grapes. Energy, 26: 457-465.
Kingsly, A.R.P. and Singh, D.B., 2007. Drying kinetics of pomegranate arils. Journal of Food Engineering, 79(2), pp.741-744.
Özdemir, M. and Devres, Y.O., 1999. The thin layer drying characteristics of hazelnuts during roasting. Journal of Food Engineering, 42(4), pp.225-233.
Zhang, Q. and Litchfield, J.B., 1991. An optimization of intermittent corn drying in a laboratory scale thin layer dryer. Drying Technology, 9(2), pp.383-395.
Doymaz, İ. 2008. Convective drying kinetics of strawberry. Chemical Engineering and Processing: Process Intensification, 47(5), pp.914-919.
Lahsasni, S., Kouhila, M., Mahrouz, M. and Jaouhari, J.T., 2004. Drying kinetics of prickly pear fruit (Opuntia ficus indica). Journal of Food Engineering, 61(2), pp.173-179.
Sharaf-Elden, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1980). A model for ear corn drying. Transactions of the ASAE, 23(5), 1261– 1265, 1271.
Wang, C.Y. and Singh, R.P., 1978. A single layer drying equation for rough rice (No. 78-3001, p. 33). ASAE paper.
Kassem, A.S., 1998. Comparative studies on thin layer drying models for wheat. In Proceedings of the 13th International Congress on Agricultural Engineering (Vol. 6, pp. 2-6).
Doymaz, I. 2007. Air-drying characteristics of tomatoes. Journal of Food Engineering, 78(4), pp.1291-1297.
Doymaz, I. 2012. Drying of Pomegranate Seeds Using Infrared Radiation. Food Science and Biotechnology. 21: 1269-1275.
Toğrul, İ.T. and Pehlivan, D., 2004. Modelling of thin layer drying kinetics of some fruits under open-air sun drying process. Journal of Food Engineering, 65(3), pp.413-425.
Ibarz, A., Pagan, J. and Garza, S., 1999. Kinetic models for colour changes in pear puree during heating at relatively high temperatures. Journal of Food Engineering, 39(4), pp.415-422.
Ghorbani Hasan-Saraei, A., Shahidi, S-. A. Mohebbi, M. and Maaziyan, R. 2016. Modelling Kinetics of Thermal Colour Degradation in Production of Beetroot Juice Concentrate by Various Heating Methods. Journal of Food Technology and Nutrition, Volume 13, Issue 2, Page 87-98 (in Persian).
Meshkani, S. M., PourFalah, Z., Tavakolipour, H., Mohammadi, M., Nahardani, M. 2012. Investigation of thin-layer drying kinetics of zucchini with hot-air convection process. Innovation in food science and technology. 4(3): 75-82.
Dehbooreh, R., & Esmaiili, M. 2010. Evaluation of Microwave and Convective Finish Drying Parameters and Drying Effects on Color of Dried Grapes. Iranian Food Science And Technology Research Journal, 5(2): 108-122.
Zirjani l., Tavakolipour, H. 2010. The effect of different pretreatments in drying process of banana using microwave. Innovation in food science and technology. 2(1): 53-66.
Rahnama, M., KhoshTaghaza, M.H., Ghbadian, B. 2011. Adsorption and desorption equilibrium moisture content and isosteric heat of estamaran date. Food Science and Technology. 8 (28): 19-30.
Khafajeh, H., Banakar, A., Zarein, M., Khoshtaghaza, M. 2014. Investigation of mulberry drying kinetics and moisture Diffusivity under microwave oven. Food Science and Technology. 11(45): 143-150.
Murthy, K., Pandurangapp, T. and Manohar, B., 2012. Microwave drying of mango ginger (Curcuma amada Roxb): prediction of drying kinetics by mathematical modelling and artificial neural network. International journal of food science & technology, 47(6): 1229-1236.
Ghaderi, A., Abbasi, S., Hamidi, Z. 2012. Selecting a mathemathical model for drying kinetics of yoghurt in a microwave–vacuum dryer, Journal of Research and Innovation in Food Science and Technology, 1(2): 139-152.
Garza, S., Ibarz, A., Pagan, J. and Giner, J., 1999. Non-enzymatic browning in peach puree during heating. Food research international, 32(5), pp.335-343.
Maskan, M., 2001. Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of food engineering, 48(2), pp.169-175.