اثر ترکیبات غیرقابل صابونی شونده نانوریزپوشانی شده روغن سبوس برنج طارم در پایداری اکسایشی روغن سویا

نویسندگان
1 دانشگاه علوم کشاورزی و منابع طبیعی ساری
2 عضو هیات علمی دانشگاه علوم کشاورزی و منابع طبیعی ساری
چکیده
این مطالعه با هدف بررسی اثر ترکیبات غیرقابل صابونی شونده روغن سبوس برنج طارم به صورت آزاد و نانوریزپوشانی شده در پایداری اکسایشی روغن سویا انجام شد. بدین منظور نانوریزپوشانی ترکیبات غیرقابل صابونی شونده با دیواره پوششی کیتوزان و صمغ قدومه شهری انجام و اندازه ذزات، راندمان ریزپوشانی و فعالیت آنتی­اکسیدانی قبل و بعد از نانوریزپوشانی اندازه­گیری شد. اثر ترکیبات غیرقابل صابونی شونده به صورت آزاد و نانوریزپوشانی شده و آنتی اکسیدان سنتزی TBHQ بر پایداری اکسایشی روغن سویا با آزمون های عدد پراکسید PV))، دی ان مزدوج (CD) ، عدد تیوباربیتوریک اسید (TBA)و شاخص رنگی ارزیابی و همچنین رهایش ترکیبات فنولی و توکوفرولی اندازه­گیری شد. نتایج این تحقیق نشان داد که نمونه نانوریزپوشانی شده با صمغ قدومه شهری اندازه ذرات و راندمان ریزپوشانی بالاتری نسبت به نمونه نانوریزپوشانی شده با کیتوزان داشت و همچنین فعالیت آنتی­اکسیدانی ترکیبات غیرقابل صابونی شونده بعد از نانوریزپوشانی کاهش یافت. در بررسی پایداری اکسایشی روغن سویا نتایج ما نشان داد که در مراحل ابتدایی نگهداری ترکیبات غیرقابل صابونی شونده روغن سبوس برنج و نمونه­های نانوریزپوشانی شده سرعت اکسیداسیون روغن سویا را افزایش دادند ولی در ادامه ترکیبات غیرقابل صابونی شونده به شکل آزاد فعالیت آنتی­اکسیدانی بهتری را نسبت به نمونه­های نانوریزپوشانی شده نشان داده است و نمونه نانوریزپوشانی شده با صمغ قدومه شهری فعالیت بهتری را نسبت به نمونه نانوریزپوشانی شده با کیتوزان داشت. با این حال، آنتی­اکسیدان سنتزی TBHQ فعالیت آنتی­اکسیدانی بالاتر و عملکرد بهتری را نشان داد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of nano-encapsulated unsaponifiable matter of Tarom rice bran oil on oxidative stability of soybean oil

نویسندگان English

mahboobeh jamshidi 1
reza esmaeilzadeh kenari 2
Ali Motamedzadegan 1
Porya Biparva 1
1 sari agricultural sciences and natural resources university
2 SARI AGRICULTURAL SCIENCES AND NATURAL RESOURCES UNIVERSITY
چکیده English

This study was investigated whit aimed to the effect of unsaponifiable matter (USM) of Tarom rice bran oil on free and nano-encapsulated form in oxidative stability of soybean oil. For this purpose nanoencapsulation of USM by chitosan and Lepidium perfoliatum seed gum (LPSG) as wall material were performed and particle size, encapsulation efficiency and also antioxidant activity before and after nanoencapsulation were measured. The effect of free and nano-encapsulated forms and synthetic antioxidant TBHQ on oxidative stability of soybean oil were evaluated by peroxide value (PV), conjugated dien (CD), thiobarbituric acid (TBA) and color index and also release of phenolic and tocopherol compounds were measured. The results of this study showed that the nano-encapsulated sample by LPSG had particle size and encapsulation efficiency higher than that of the nano-encapsulated sample by chitosan, and also the antioxidant activity of USM decreased after nanoencapsulation. In the study of oxidative stability of soybean oil, our results showed that in the early stages of storage, USM of rice bran oil and nano-encapsulated samples increased the oxidation rate of soybean oil, but further free USM has shown better antioxidant activity compared to nano-encapsulated samples, and nano-encapsulated sample by LPSG had better antioxidant activity than the nano-encapsulated sample by chitosan. However, the synthetic antioxidant TBHQ showed higher antioxidant activity and better performance.

کلیدواژه‌ها English

Unsaponifiable matters
Rice bran oil
Nanoencapsulation
Oxidative stability
[1] Shahidi, F. 2005. Bailey’s industrial oil and fat products. New Jersey: John Wiley & Sons.
[2] Shahidi, F., & Zhong, Y. 2005. Antioxidants: regulatory status. Bailey's industrial oil and fat products.
[3] Gámez‐Meza, N., Noriega‐Rodríguez, J. A., Medina‐Juárez, L. A., Ortega‐García, J., Cázarez‐Casanova, R., & Angulo‐Guerrero, O. 1999. Antioxidant activity in soybean oil of extracts from Thompson grape bagasse. Journal of the American Oil Chemists' Society, 76(12), 1445-1447.
[4] Devi, R. R., & Arumughan, C. 2007. Phytochemical characterization of defatted rice bran and optimization of a process for their extraction and enrichment. Bioresource technology, 98(16), 3037-3043.
[5] Rukmini, C., & Raghuram, T. C. 1991. Nutritional and biochemical aspects of the hypolipidemic action of rice bran oil: a review. Journal of the American College of Nutrition, 10(6), 593-601.
[6] Nicolosi, R.J., Rogers, E.J., Ausman, L.M., Orthoefer, F.T., 1994. Rice bran oil and its health benefits. Rice science and technology 59, 421-437.
[7] Dhavamani, S., Rao, Y. P. C., & Lokesh, B. R. 2014. Total antioxidant activity of selected vegetable oils and their influence on total antioxidant values in vivo: A photochemiluminescence based analysis. Food chemistry, 164, 551-555.
[8] Farhoosh, R., Tavassoli-Kafrani, M., & Sharif, A. 2013. Assaying antioxidant characteristics of sesame seed, rice bran, and bene hull oils and their unsaponifiable matters by using DPPH radical-scavenging model system. Journal of Agricultural Science and Technology 15, 241-251.
[9] Gouin, S. 2004. Microencapsulation: industrial appraisal of existing technologies and trends. Trends in food science & technology, 15(7-8), 330-347.
[10] Spigno, G., Donsì, F., Amendola, D., Sessa, M., Ferrari, G., & De Faveri, D. M. 2013. Nanoencapsulation systems to improve solubility and antioxidant efficiency of a grape marc extract into hazelnut paste. Journal of Food Engineering, 114(2), 207-214.
[11] Wang, S., Su, R., Nie, S., Sun, M., Zhang, J., Wu, D., & Moustaid-Moussa, N. 2014. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. The Journal of nutritional biochemistry, 25(4), 363-376.
[12] Acosta, E. 2009. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Current opinion in colloid & interface science, 14(1), 3-15.
[13] Ting, Y., Jiang, Y., Ho, C. T., & Huang, Q. 2014. Common delivery systems for enhancing in vivo bioavailability and biological efficacy of nutraceuticals. Journal of Functional Foods, 7, 112-128.
[14] Cheow, W. S., & Hadinoto, K. 2011. Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids and Surfaces B: Biointerfaces, 85(2), 214-220.
[15] Ladj, R., Bitar, A., Eissa, M. M., Fessi, H., Mugnier, Y., Le Dantec, R., & Elaissari, A. 2013. Polymer encapsulation of inorganic nanoparticles for biomedical applications. International journal of pharmaceutics, 458(1), 230-241.
[16] Sahoo, D., Sahoo, S., Mohanty, P., Sasmal, S., & Nayak, P. L. 2009. Chitosan: a new versatile bio-polymer for various applications. Designed monomers and polymers, 12(5), 377-404.
[17] Koocheki, A., Taherian, A. R., Razavi, S. M., & Bostan, A. 2009. Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. Food Hydrocolloids, 23(8), 2369-2379.
[18] Taghvaei, M., Jafari, S. M., Mahoonak, A. S., Nikoo, A. M., Rahmanian, N., Hajitabar, J., & Meshginfar, N. 2014. The effect of natural antioxidants extracted from plant and animal resources on the oxidative stability of soybean oil. LWT-Food Science and Technology, 56(1), 124-130.
[19] Mohammadi, A., Jafari, S. M., Esfanjani, A. F., & Akhavan, S. 2016. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food chemistry, 190, 513-519.
[20] Roostaee, M., Barzegar, M., Sahari, M. A., & Rafiee, Z. 2017. The enhancement of pistachio green hull extract functionality via nanoliposomal formulation: studying in soybean oil. Journal of food science and technology, 54(11), 3620-3629.
[21] Delfanian, M., Razavi, S. M., Khodaparast, M. H. H., Kenari, R. E., & Golmohammadzadeh, S. 2018. Influence of main emulsion components on the physicochemical and functional properties of W/O/W nano-emulsion: Effect of polyphenols, Hi-Cap, basil seed gum, soy and whey protein isolates. Food Research International, 108, 136-143.
[22] Lozano, Y. F., Mayer, C. D., Bannon, C., & Gaydou, E. M. 1993. Unsaponifiable matter, total sterol and tocopherol contents of avocado oil varieties. Journal of the American Oil Chemists’ Society, 70(6), 561-565.
[23] Dehghan, B., Esmaeilzadeh Kenari, R., & Raftani Amiri, Z. 2018. The effect of Lepidium sativum and Lepidium perfoliatum gums on properies of nanocapsule containing essential oil of orange. Journal of Food Science & Technology, 15 (79), 157-169.
[24] Bae, E. K., & Lee, S. J. 2008. Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. Journal of Microencapsulation, 25(8), 549-560.
[25] Ramadan, M. F., Kroh, L. W., & Morsel, J. T. 2003. RSA of black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.) and niger (Guizotia abyssinica Cass.) crude seed oils and oil fractions. Journal of Agricultural and Food Chemistry, 51, 6961-6969.
[26] AOAC. 2005. Official methods of Analysis, 15th Edition. Association of official analytical chemist.
[27] Saguy, I. S., Shani, A., Weinberg, P., & Garti, N. 1996. Utilization of jojoba oil for deep-fat frying of foods. LWT-Food Science and Technology, 29(5-6), 573-577.
[28] AOCS 2007. Official methods and recommended practices of the American OilChemist’s Society (7th ed). Champaign: American Oil Chemists-Society.
[29] Capannesi, C., Palchetti, I., Mascini, M., & Parenti, A. 2000. Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chemistry, 71(4), 553-562.
[30] Wong, M. L., Timms, R. E., & Goh, E. M. 1988. Colorimetric determination of total tocopherols in palm oil, olein and stearin. Journal of the American Oil Chemists' Society, 65(2), 258-261.
[31] Carneiro, H. C., Tonon, R. V., Grosso, C. R., & Hubinger, M. D. 2013. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443-451.
[32] Tonon, R. V., Grosso, C. R., & Hubinger, M. D. 2011. Influence of emulsion composition and inlet air temperature on the microencapsulation of flaxseed oil by spray drying. Food Research International, 44(1), 282-289.
[33] Jafari, S. M., Assadpoor, E., Bhandari, B., & He, Y. 2008. Nano-particle encapsulation of fish oil by spray drying. Food Research International, 41(2), 172-183.
[34] Radünz, M., da Trindade, M. L. M., Camargo, T. M., Radünz, A. L., Borges, C. D., Gandra, E. A., & Helbig, E. 2019. Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food chemistry, 276, 180-186.
[35] Tsuchihashi, H., Kigoshi, M., Iwatsuki, M., & Niki, E. 1995. Action of β-carotene as an antioxidant against lipid peroxidation. Archives of biochemistry and biophysics, 323(1), 137-147.
[36] Kennedy, T. A., & Liebler, D. C. 1992. Peroxyl radical scavenging by beta-carotene in lipid bilayers. Effect of oxygen partial pressure. Journal of Biological Chemistry, 267(7), 4658-4663.
[37] Jørgensen, K., & Skibsted, L. H. 1993. Carotenoid scavenging of radicals. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 196(5), 423-429.
[38] Smith, L. M., Frankel, E. N., Haab, W., & Jack, E. L. 1958. Effect of phospholipids and unsaponifiable matter on oxidative stability of milk fat. Journal of Dairy Science, 41(4), 472-482.
[39] White, P. J. 1991. Methods for measuring changes in deep-fat frying oils. Food technology (USA), 45, 75-80.
[40] Kharazi, S. H., Kenari, R. E., Amiri, Z. R., & Azizkhani, M. 2012. Characterization of Iranian virgin olive oil from the Roodbar region: A study on Zard, Mari and Phishomi. Journal of the American Oil Chemists' Society, 89(7), 1241-1247.
[41] Gortzi, O., Lalas, S., Chinou, I., & Tsaknis, J. 2008. Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. European food research and technology, 226(3), 583-590.