بررسی فرآیندهای خشک کردن، پودر سازی و فشرده‌سازی به منظور تولید قرص فشرده سالم از گوجه‌فرنگی تازه

نویسندگان
1 دانشگاه بوعلی سینا-دانشکده کشاورزی-گروه مهندسی بیوسیستم
2 دانشگاه بوعلی سینا، دانشکده کشاورزی، گروه مهندسی بیوسیستم
3 گروه مهندسی صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت مدرس
چکیده
با توجه به تغییر خصوصیات کیفی و درصد بالای تخریب مواد مغذی طی فرآیندهای فراوری مواد غذایی، حفظ کیفیت محصول و اجزا غذایی آن یکی از جنبه‌های مهم فرآوری مواد غذایی است. در این تحقیق اثر فرآیند خشک کردن ورقه‌های گوجه‌فرنگی تازه به منظور تولید پودر گوجه‌فرنگی به شیوه جریان همرفت هوای داغ در سه سطح دمایی 45، 60 و °C 75 بر سینتیک تخریب ویتامین ث (آسکوربیک اسید)، تغییرات رنگ (L*، a* و b*) و مقدار انرژی ویژه مصرفی خشک کردن بررسی شد. سپس از خمیر حاصل از پودر گوجه­فرنگی در سه سطح محتوای رطوبتی 25، 40 و %d.b. 55 به منظور تولید قرص فشرده استفاده شد. همچنین اثر دمای هوای خشک­کردن قرص‌های فشرده تولیدی به شیوه همرفتی هوای داغ در سه سطح دمایی 40، 50 و °C 60 بر غلظت ویتامین ث (به عنوان شاخصی برای حفظ ارزش غذایی) بررسی و شرایط بهینه برای فرآیند­های خشک کردن، پودرسازی و قرص­سازی تعیین شدند. نتایج نشان داد که دمای خشک کردن و محتوای رطوبتی محصول اثر معنی‌داری بر حفظ غلظت ویتامین ث (حفظ سلامت محصول) طی فرآیندهای خشک کردن، پودر کردن و تولید قرص فشرده گوجه­فرنگی دارند. کاهش دمای خشک کردن و محتوای رطوبتی سبب حفظ بهتر کیفیت و ارزش غذایی (تخریب کمتر ویتامین ث) قرص فشرده گوجه‌فرنگی می­گردد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Study on Drying, Powdering and Compression Processes to produce Healthy Tablet from Fresh Tomatoes

نویسندگان English

Ali Ghasemi 1
Reza Amiri Chayjan 2
Mohammad Hossein Azizi Tabriz zad 3
1 Department of Biosystems Engineering-Faculty of Agriculture-Bu Ali Sina University
2 Department of Biosystems Engineering, Faculty of Agriculture, Bu Ali Sina University
3 Department of Food Science and Technology, Faculty of Agriculture, Tarbiat Modares University
چکیده English

Degradation of nutrients and change in the food quantity occur during the food processing; so, the food quality and retention nutrients are of the most important aspects of food processing. In this research, the effect of tomato slices drying process on the kinetics of vitamin C (ascorbic acid) degradation, color changes (L *, a * and b * ) and the specific energy consumption in order to produce tomato powder was investigated during the hot air drying at 45, 60 and 75 °C. This tomato powder was used to produce tomato compact tablets. Also, the effect of tomato dough moisture content (25, 40 and 55 %d.b.) and drying temperature of wet tomato tablet (30, 40 and 50 °C) on vitamin C concentration (as an indicator for retain nutritional) was investigated during the compression and convective drying processes. The results showed that the drying temperature and moisture content had a significant effect on the retention of vitamin C concentration (product health) when the fresh tomato processing and the production of compact tablet were going on. Drying under lower temperatures and moisture contents helps to retain quality and nutritional value (less degradation of vitamin C) of tomato tablets.

کلیدواژه‌ها English

Tomato powder
Temperature
Compact tablet
Moisture content
Vitamin C
1. Dezyani, A., Jafari, S.M., Ziyaeifar, A.M., Ghorbani, M. and Sadeghi Mahoonak A.R., 2018, Optimization of spray drying process of tomato paste by using response surface methodology, Journal of Food Science and Technology, 72(14), 47-65.
2. FAOSTAT (2014). Global tomato production in 2012. Rome, FAO. (www.fao.org).
3. Emam jome, Z., Tahmasbi, M., Piroozi Fard, M. and Asgari, G.R., 2009, Study on the Effect of Osmotic Pretreatment on the Structural and Microstructural Properties of Air-Dried Tomato, Iranian Journal of Biosystem Engineering, 39(1), 133- 139.
4. Phisut, N., 2012, Spray drying technique of fruit juice powder: some factors influencing the properties of , 19(4), 1297-1306.
5. Aziz, M., Yousf, Y.A., Blanchard, C., Saifullah, M., Farahnaky, A. and ScheilingG., 2018, Material Properties and Tableting of Fruit Powders. Food Engineering Reviews, p. 1-15.
6. Latapi, G. and Barrett, D.M., 2006, Influence of Pre‐drying Treatments on Quality and Safety of Sun‐dried Tomatoes. Part I: Use of Steam Blanching, Boiling Brine Blanching, and Dips in Salt or Sodium Metabisulfite. Journal of food science, 71(1), 24-31.
7. Akbari, M., SHahedi, M., Hmadami, N., Dokhani, S. and Sadeghi, M., 2009, Study of Water Loss Kinetics and Quality Characteristics of The Tomato Slices During Drying by Three Methods: Solar Drying,Open-Sun Drying and Hot Air Drying. Journal of Science and Technology of Agriculture and Natural Resources, 13(47), 445-459.
8. Marfil, P., Santos, E. and Telis, V., 2008, Ascorbic acid degradation kinetics in tomatoes at different drying conditions. LWT-Food Science and Technology, 41(9), 1642-1647.
9. Figiel, A., 2010, Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. Journal of Food Engineering, 98(4), 461-470.
10. Fernandes, F.A., Rodrigues, S., García-Pérez, J.V. and Cárcel, J.A., 2016, Effects of ultrasound-assisted air-drying on vitamins and carotenoids of cherry tomatoes. Drying technology, 34(8), 986-996.
11. Goula, A. and Adamopoulos, K., 2006, Retention of ascorbic acid during drying of tomato halves and tomato pulp. Drying Technology, 24(1), 57-64.
12. Jin, X., Oliviero, T., van der Sman, R.G.M., Verkerk, R., Dekker, M., 2014, Impact of different drying trajectories on degradation of nutritional compounds in broccoli (Brassica oleracea var. italica). LWT - Food Science and Technology, 59(1), 189-195.
13. Vega-Gálvez, A., Scala, A.D., Rodríguez, K., Lemus-Mondaca, R., Miranda, M., López, J. and Perez-Won, M., 2009, Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper (Capsicum annuum, L. var. Hungarian). Food Chemistry, 117(4), 647-653.
14. Lemus-Mondaca, R., Ah-Hen, K., ega-Gálvez, A., Honores, C. and Moraga, N.O., 2016, Stevia rebaudiana leaves: effect of drying process temperature on bioactive components, antio,xidant capacity and natural sweeteners. Plant foods for human nutrition, 71(1), 49-56.
15. Fellows, P.J., 2009, Food processing technology: principles and practice. Elsevier.
16. Yousuf, B., Gul, K., Wani, A.A. and Singh, P., 2016, Health benefits of anthocyanins and their encapsulation for potential use in food systems: a review. Critical reviews in food science and nutrition, 56(13), 2223-2230.
17. Ghasemi, A., Chayjan, R.A. and Najafabadi, H.J., 2018, Optimization of granular waste production based on mechanical properties. Waste Management, 75, 82-93.
18. Munyaka, A.W., Oey, I., Van Loey, A. and Hendrickx, M., 2010, Application of thermal inactivation of enzymes during vitamin C analysis to study the influence of acidification, crushing and blanching on vitamin C stability in Broccoli (Brassica oleracea L var. italica). Food Chemistry, 120(2), 591-598.
19. Yusof, Y.A., Mohd Salleh, F.S., Chin, N.L., Talib, R. A., 2012, The drying and tabletting of pitaya powder. Journal of Food Process Engineering, 35(5), 763-771.
20. Ong, M., Yusof, Y.A., Aziz, M.j., Chin, M.L. and Amin, N.M., 2014, Characterisation of fast dispersible fruit tablets made from green and ripe mango fruit powders. Journal of Food Engineering, 125, 17-23.
21. Zea, L.P., Yusof, Y.A., Aziz, M.j., Ling, C.N., Amin, N.M., 2013, Compressibility and dissolution characteristics of mixed fruit tablets made from guava and pitaya fruit powders. Powder technology, 247, 112-119.
22. Adiba, B.D., Salem, B., Nabil, S. and Abedelhakim, M., 2011, Preliminary characterization of food tablets from date (Phoenix dactylifera L.) and spirulina (Spirulina sp.) powders. Powder Technology, 208(3), 725-730.
23. Davoodi, M.G., Vijayanad, P., Kulkarni, S.G. and Ramana, K.V.R., 2007, Effect of different pre-treatments and dehydration methods on quality characteristics and storage stability of tomato powder. LWT-Food Science and Technology, 40(10), 1832-1840.
24. Chayjan, R.A., Salari, K., Abedi, Q. and Sabziparvar, A,A., 2013, Modeling moisture diffusivity, activation energy and specific energy consumption of squash seeds in a semi fluidized and fluidized bed drying. Journal of food science and technology, 2013. 50(4), 667-677.
25. Yeganeh, F.A., 2015, Compare the results of the three methods, optical spectroscopy, voltammetry and titration in the measurment of vitamin c in friut sampels distributed in qom market. Iranian Food Science and Technology Research Journal, 4(4), 355-364.
26. Du Toit, R., Volsteedt, Y. and Apostolides, Z., 2001, Comparison of the antioxidant content of fruits, vegetables and teas measured as vitamin C equivalents. Toxicology, 166(1), 63-69.
27. Spínola, V., Llorent-Martínez, E.J., and Castilho, P.C., 2014, Determination of vitamin C in foods: Current state of method validation. Journal of Chromatography A, 1369, 2-17.
28. Drewnowski, A., 2010, The Nutrient Rich Foods Index helps to identify healthy, affordable foods–. The American journal of clinical nutrition, 91(4), 1095-1101.
29. Jin, X., Van Boxtel, A., Gerkema, E., Vergeldt, F.J., Van As, j., Van Straten, G., Boom, R.M. and van der Sman, R., 2012, Anomalies in moisture transport during broccoli drying monitored by MRI? Faraday discussions, 158(1), 65-75.
30. Wongsiriamnuay, T. and Tippayawong, N., 2015, Effect of densification parameters on the properties of maize residue pellets. Biosystems Engineering, 139, 111-120.
31. Ghasemi, A. and Chayjan, R.A., 2018, Optimization of Pelleting and Infrared-Convection Drying Processes of Food and Agricultural Waste Using Response Surface Methodology (RSM). Waste and Biomass Valorization, p. 1-19.
32. Abushita, A., Daood, H. and Biacs, P., 2000, Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. Journal of Agricultural and Food Chemistry, 48(6), 2075-2081.
33. Sablani, S., Opara, L. and K., Al-Balushi, 2006, Influence of bruising and storage temperature on vitamin C content of tomato fruit. Journal of Food Agriculture and Environment, 4(1), 54-57.
34. Toor, R.K. and Savage, G.P., 2005, Antioxidant activity in different fractions of tomatoes. Food research international, 38(5), 487-494.
35. Khraisheh, M., McMinn, W. and Magee, T., 2004, Quality and structural changes in starchy foods during microwave and convective drying. Food research international, 37(5), 497-503.
36. Erenturk, S., Gulaboglu, M.S. and Gultekin, S., 2005, The effects of cutting and drying medium on the vitamin C content of rosehip during drying. Journal of Food Engineering, 68(4), 513-518.
37. Wang, B., Jin, X. and Chen, X.D., 2017, Investigation on the relationship between the integrity of food matrix and nutrient extraction yield of broccoli. LWT-Food Science and Technology, 85, 170-174.
38. Kajiyama, T., Hubinger, M. and Menegalli, F, 1988, Food quality degradation in co-current and counter-current moving bed dryers. in Proceedings of the 11th International Drying Symposium IDS.
39. Bluestein, P.M. and Labuza, T.P., 1988, Effects of moisture removal on nutrients, in Nutritional evaluation of food processing, Springer, 393-422.
40. Oliviero, T., Verkerk, R., Van Boekel, M. and Dekker, M., 2014, Effect of water content and temperature on inactivation kinetics of myrosinase in broccoli (Brassica oleracea var. italica). Food chemistry, 163, 197-201.
41. Maskan, M., 2000, Microwave/air and microwave finish drying of banana. Journal of food engineering, 44(2), 71-78.