بررسی ویژگی‎های فیزیکی و شیمیایی میکروامولسیون‎های حاوی بتا- سیتواسترول بر پایه روغن‎ کنجد

نویسندگان
استادیار
چکیده
در سال‎های اخیر، فیتواسترول‏ها به طور گسترده‏ای به عنوان یک افزودنی در مواد غذایی با هدف تنظیم سطح کلسترول پلاسما، و نیز به عنوان افزودنی در مواد آرایشی و داروسازی مورد استفاده قرار گرفته‎اند. نقطه ذوب بالا و نامحلول بودن آن‎ها در آب و روغن، افزودن فیتواسترول‎ها را به مواد غذایی با مشکل مواجه می‎کند. در این مطالعه، میکروامولسیون‎هایی حاوی بتا- سیتواسترول با فرمولاسیون مختلف از ترکیب روغن کنجد و توئین 80 به عنوان سورفکتانت و مخلوط اتانول/ پروپیلن گلیکول به عنوان کوسورفکتانت تهیه شد و برای کاهش اندازه ذره از هموژنایزر اولتراسونیک استفاده گردید. درصد روغن و همچنین نسبت سورفکتانت: کوسورفکتانت در نمونه‎ها تغییر داده شد تا فرمولاسیون بهینه به‎دست آید. میانگین قطر حجمی ذرات حدود 50 نانومتر وپایین‎تر بود. ارتباط معناداری بین افزودن بتا- سیتواسترول به نمونه‎ها و میانگین قطر حجمی و شاخص پراکندگی میکروامولسیون‎ها یافت نشد(05/0<p). همچنین میانگین قطر حجمی، با افزایش درصد روغن و افزایش نسبت سورفکتانت: کوسورفکتانت به طور معناداری افزایش یافت(05/0>p). متوسط شاخص پراکندگی همه نمونه‎ها زیر 5/0 بود. ویسکوزیته و کشش سطحی نمونه‎ها با افزایش درصد روغن و اقزودن بتا- سیتواسترول به نمونه‎ها به طور معناداری افزایش یافت(05/0>p). همچنین پایداری نمونه‎ها در دماهای مختلف پیشبینی شده برای نگهداری و استفاده مطلوب بود. بهترین نتایج به دست آمده برای نمونه حاوی 40 درصد روغن، با نسبت سورفکتانت: کوسورفکتانت 1:2 بود که افزودن بتا- سیتواسترول به آن، تاثیر نامطلوبی بر نتایج به دست آمده نداشت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Physical and chemical properties of β-sitosterol containing microemulsions based on sesame oil

نویسندگان English

Atefeh Pourjahed
Habib-Allah Abbasi
Assistant Professor
چکیده English

In recent years, phytosterols have been widely used as an additive in foods to regulation cholesterol level in the plasma, in cosmetics and pharmaceuticals. The high melting point and insolubility in water and oil make it difficult to add phytosterols to food. In this study, microemulsion containing β-sitosterol with different formulations were prepared from sesame oil and tween 80 as surfactant and a mixture of ethanol/propylene glycol as cosurfactant; An ultrasonic homogenizer was used to reduce the particle size. Oil percentage and the ratio of surfactant: cosurfactant was changed in the samples to obtain an optimal formulation. The mean particle diameter was about 50 nm and lower. There was no significant relationship between β-sitosterol containing, mean diameter and polydispersity index of microemulsions (p>0.05). The mean particle diameter was increased when oil content and the ratio of surfactant: cosurfactant increased (p<0.05). Poly dispersity index of the samples were below 0.5. The viscosity and surface tension of the samples increased with the increase in oil content and β-sitosterol addition (p <0.05). The stability of the samples was also predicted at various temperatures. The best results were obtained for the sample containing 40% oil, with a surfactant: cosurfactant ratio of 2:1, and the addition of β-sitosterol did not have an adverse effect on the results.

کلیدواژه‌ها English

Microemulsion
Oil
surfactant
cosurfactant
1. Moghimipour E, Salimi A, Leis F. (2012). Preparation and Evaluation of Tretinoin Microemulsion based on Pseudo-Ternary Phase Diagram. Advanced Pharmaceutical Bulletin. 2(2): 141-147.
2. Saini JK, Nautiyal U, Kumar M, Singh D, Anwar F. (2014). Microemulsions: A Potential Novel Drug Delivery System. International Journal of Pharmaceutical and Medicinal Research. 2(1):15-20.
3. Kumar A, Kushwaha V, Sharma PK. (2014). Pharmaceutical Microemulsion: Formulation, Characterization and Drug Deliveries Across Skin. International Journal of Drug Development and Research. 6(1):1-21.
4. Hegde RR, Verma A, Ghosh A. (2013). Microemulsion: New Insights into the Ocular Drug Delivery. ISRN Pharmaceutics. 2013.
5. Wen H, Jung H, Li X. (2015). Drug Delivery Approaches in Addressing Clinical Pharmacology-related Issues: Opportunities and Challenges. The AAPS Journal. 17(6): 1327-1340.
6. Luk Y-Y, Abbott NL. (2002). Applications of Functional Surfactants. Current Opinion in Colloid & Interface Science. 7(5-6): 267-275.
7. Liu R. (2008). Emulsions, Microemulsions, and Lipid-based Drug Delivery Systems for Drug Solubilization and Delivery—Part II: Oral Applications. Water-Insoluble Drug Formulation, Second Edition. CRC Press. 233-60.
8. Gupta P, Shi Y, Cannon JB. (2018). Emulsions, Microemulsions, and Lipid-based Drug Delivery Systems for Drug Solubilization and Delivery—Part I: Parenteral Applications. Water-Insoluble Drug Formulation, Third Edition: CRC Press. 211-245.
9. Alexander M, Lopez AA, Fang Y, Corredig M. (2012). Incorporation of Phytosterols in Soy Phospholipids Nanoliposomes: Encapsulation Efficiency and Stability. LWT-Food Science and Technology. 47(2): 427-436.
10. Leong WF, Che Man YB, Lai OM, Long K, Misran M, Tan CP. (2009). Optimization of Processing Parameters for the Preparation of Phytosterol Microemulsions by the Solvent Displacement Method. Journal of Agricultural and Food Chemistry. 57(18): 8426-8433.
11. Watson RR, Preedy VR. (2003). Nutrition and Heart Disease: Causation and Prevention: CRC Press.
12. Ostlund Jr RE. (2004). Phytosterols and Cholesterol Metabolism. Current Opinion in Lipidology. 15(1): 37-41.
13. Kobayashi M, Hamada T, Goto H, Imaizumi K, Ikeda I. (2008). Comparison of Effects of Dietary Unesterified and Esterified Plant Sterols on Cholesterol Absorption in Rats. Journal of Nutritional Science and Vitaminology. 54(3):210-214.
14. MacKay DS, Jones PJ. (2011). Phytosterols in Human Nutrition: Type, Formulation, Delivery, and Physiological Function. European Journal of Lipid Science and Technology. 113(12): 1427-1432.
15. Jones PJ, AbuMweis SS. (2009). Phytosterols as Functional Food Ingredients: Linkages to Cardiovascular Disease and Cancer. Current Opinion in Clinical Nutrition & Metabolic Care. 12(2): 147-151.
16. Ostlund Jr RE. (2007). Phytosterols, Cholesterol Absorption and Healthy Diets. Lipids. 42(1):41-45.
17. Gylling H, Simonen P. (2015). Phytosterols, Phytostanols, and Lipoprotein Metabolism. Nutrients. 7(9): 7965-7977.
18. Brufau G, Canela MA, Rafecas M. (2008). Phytosterols: Physiologic and Metabolic Aspects Related to Cholesterol-Lowering Properties. Nutrition Research. 28(4): 217-225.
19. Rozner S, Popov I, Uvarov V, Aserin A, Garti N. (2009). Templated Cocrystallization of Cholesterol and Phytosterols From Microemulsions. Journal of Crystal Growth. 311(16): 4022-4033.
20. Goldberg AC, Ostlund Jr RE, Bateman JH, Schimmoeller L, McPherson TB, Spilburg CA. (2006). Effect of Plant Stanol Tablets on Low-Density Lipoprotein Cholesterol Lowering in Patients on Statin Drugs. The American Journal of Cardiology. 97(3): 376-379.
21. Bohn T, Tian Q, Chitchumroonchokchai C, Failla ML, Schwartz SJ, Cotter R, Waksman JA. (2007). Supplementation of Test Meals with Fat-free Phytosterol Products can Reduce Cholesterol Micellarization during Simulated Digestion and Cholesterol Accumulation by Caco-2 Cells. Journal of Agricultural and Food Chemistry. 55(2): 267-272.
22. Quilez J, Garcia-Lorda P, Salas-Salvado J. (2003). Potential Uses and Benefits of Phytosterols in Diet: Present Situation and Future Directions. Clinical Nutrition. 22(4): 343-351.
23. Leong W-F, Lai O-M, Long K, Man YBC, Misran M, Tan C-P. (2011). Preparation and Characterisation of Water-Soluble Phytosterol Nanodispersions. Food Chemistry. 129(1): 77-83.
24. Cercaci L, Rodriguez-Estrada MT, Lercker G, Decker EA. (2007). Phytosterol Oxidation in Oil-in-Water Emulsions and Bulk Oil. Food Chemistry. 102(1): 161-167.
25. Zychowski LM, Mettu S, Dagastine RR, Kelly AL, O’Mahony JA, Auty MA. (2019). Physical and Interfacial Characterization of Phytosterols in Oil-in-Water Triacylglycerol-based Emulsions. Food Structure. 19: 100101.
26. He Y, Chen H, Lei Z, Cao J, Tan Y. (2017). Optimization of Emulsifying Effectiveness of Phytosterol in Milk Using Two-Level Fractional Factorial Design. Acta Universitatis Cibiniensis Series E: Food Technology. 21(2): 25-32.
27. Moschakis T, Dergiade I, Lazaridou A, Biliaderis CG, Katsanidis E. (2017). Modulating the Physical State and Functionality of Phytosterols by Emulsification and Organogel Formation: Application in a Model Yogurt System. Journal of Functional Foods. 33: 386-395.
28. ایزدی, گروسی, قاسمعلی, نصیرپور, احمدی, بهرامی. (2011) بهینه سازی تولید ماست غنی شده با فیتواسترول به منظور کاهش کلسترول. پژوهش های علوم و صنایع غذایی ایران7(2).: 156-163
29. Mahajan H, Rasal A. (2013). Microemulsions for Nasal Drug Delivery Systems: An Overview. Internatinal Journal Pharmaceutical Nanotechnology. 5(4): 1825-1831.
30. Wei W, Qi X, Wang L, Zhang Y, Hua W, Li D, LV H, Zhang X. (2011). Characterization of the Sesame (Sesamum indicum L.) Global Transcriptome using Illumina paired-end Sequencing and Development of EST-SSR Markers. BMC Genomics. 12(1): 451.
31. Singh VK, Anis A, Al-Zahrani S, Pal K. (2015). Microemulsions of Sorbitans and its Derivatives for Iontophoretic Drug Delivery. International Journal Electrochemical Sciences. 10:2239-52.
32. Golmohammadzadeh S, Farhadian N, Biriaee A, Dehghani F, Khameneh B. (2017). Preparation, Characterization and in vitro Evaluation of Microemulsion of Raloxifene Hydrochloride. Drug Development and Industrial Pharmacy. 43(10): 1619-1625.
33. Prieto C, Calvo L. (2013). Performance of the Biocompatible Surfactant Tween 80, for the Formation of Microemulsions Suitable for New Pharmaceutical Processing. Journal of Applied Chemistry. 2013.
34. Chen J, Ma X-h, Yao G-l, Zhang W-t, Zhao Y. (2018). Microemulsion-based Anthocyanin Systems: Effect of Surfactants, Cosurfactants, and its Stability. International Journal of Food Properties. 21(1):1152-65.
35. Khalil E, Al-Sotari ST, Taha MO. (2012). Formulation and Characterization of IPM/Water/Nonionic-Ionic Surfactant Microemulsions. Journal of Chemistry and Chemical Engineering. 6(2): 187-198.
36. Yew HC, Misran MB. (2016). Nonionic Mixed Surfactant Stabilized Water‐in‐Oil Microemulsions for Active Ingredient In Vitro Sustained Release. Journal of Surfactants and Detergents. 19(1):49-56.
37. Elfiyani R, Amalia A, Septian YP. (2017). Effect of using the Combination of Tween 80 and Ethanol on the Forming and Physical Stability of Microemulsion of Eucalyptus Oil as Antibacterial. Journal of Young Pharmacists. 9(1): s1-s4.
38. Zeng Z, Zhou G, Wang X, Huang EZ, Zhan X, Liu J, Wang S, Wang A, Li H, Pei X, Xie T. (2010). Preparation, Characterization and Relative Bioavailability of Oral Elemene o/w Microemulsion. International Journal of Nanomedicine. 5:567-572.
39. Resende KX, Corrêa MA, Oliveira AGd, Scarpa MV. (2008). Effect of Cosurfactant on the Supramolecular Structure and Physicochemical Properties of Non-ionic Biocompatible Microemulsions. Revista Brasileira de Ciências Farmacêuticas. 44(1): 35-42.
40. Sisak MAA, Daik R, Ramli S. (2017). Study On The Effect Of Oil Phase And Co-Surfactant On Microemulsion Systems. Malaysian Journal of Analytical Sciences. 21(6):1409-16.