[1] Heinzelmann, K., & Franke, K. (1999). Using freezing and drying techniques of emulsions for the microencapsulation of fish oil to improve oxidation stability.
Colloids and Surfaces ,Biointerfaces, 12(3-6), p. 223-229.
[2] Shahidi, F. (2004). Functional foods: their role in health promotion and disease prevention. Journal of Food Science, 69(5), R146-R149.
[3] Shinde, A. J,. & More, H. N. (2013). Hypolipidemic activity of naniparticles containing lovastatin in hypercholesteric albino rats.
[4] Walker, R. M., Decker, E. A., & McClements, D. J. (2015). Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: Effect of surfactant concentration and particle size. Journal of Food Engineering, 164, 10-20.
[5] Lauterbach, R. & Pawlik, D. (2014). Fish-oil fat emulsion and retinopathy in very low birth weight infants, in Handbook of nutrition, diet and the eye. Elsevier, 233-240.
[6] Jordan, R. G. (2010). Prenatal omega‐3 fatty acids: review and recommendations. The Journal of Midwifery & Women’s Health, 55(6), 520-528.
[7] Gruenfelder, C.A. (2014). Sensory evaluation of heart-healthy foods enriched with omega-3 fats from fish oil. College of Saint Elizabeth.
[8] Kolanowski, W. (2005). Bioavailability of omega-3 PUFA from foods enriched with fish oil-a mini review. Polish journal of food and nutrition sciences, 14(4), 335.
[9] Komaiko, J., Sastrosubroto, A., & McClements, D. J. (2016). Encapsulation of ω-3 fatty acids in nanoemulsion-based delivery systems fabricated from natural emulsifiers: Sunflower phospholipids. Food chemistry, 203, 331-339.
[10] Kolanowski, W. & Berger, S. (1999). Possibilities of fish oil application for food products enrichment with omega-3 PUFA. International journal of food sciences and nutrition, 50(1), 39-49.
[11] Champagne, C. P. & Fustier, P. (2007). Microencapsulation for the improved delivery of bioactive compounds into foods. Current opinion in biotechnology, 18(2), 184-190.
[12] Huang, G. Q., Han, X. N., Xiao, J. X., & Cheng, L. Y. (2017). Effects of coacervation acidity on the genipin crosslinking action and intestine-targeted delivery potency of the O-carboxymethyl chitosan–gum arabic coacervates.
International Journal of Polymeric Materials and Polymeric Biomaterials, 66(2), 89-96.
[13] Rodriguez, J., Martín, M., Ruiz, M., & Clares, B. (2016). Current encapsulation strategies for bioactive oils: From alimentary to pharmaceutical perspectives. Food Research International, 83, 41-59.
[14] Zimet, P. & livney, Y. D. (2009). Livney, Beta-lactoglobulin and its nanocomplexes with pectin as vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloids, 23(4), 1120-1126.
[15] Solval, K. M., Rodezno, L. E., Moncada, M., Bankston, J. D., & Sathivel, S. (2014). Evaluation of chitosan nanoparticles as a glazing material for cryogenically frozen shrimp. LWT-Food Science and Technology, 57(1), 172-180.
[16] Yuan, Y., Ong, Z.Y.,Sun, Y. E., Zeng, Q. Z., & Yang, X. Q. (2017). Complex coacervation of soy protein with chitosan: Constructing antioxidant microcapsule for algal oil delivery. LWT-Food Science and Technology, 75, 171-179.
[17] Nowzari, F., Shábanpour, B., & Ojagh, S. M. (2013). Comparison of chitosan–gelatin composite and bilayer coating and film effect on the quality of refrigerated rainbow trout. Food Chemistry, 141(3), 1667-1672.
[18] Woranuch, S. & Yoksan, R. (2013). Eugenol-loaded chitosan nanoparticles: I. Thermal stability improvement of eugenol through encapsulation. Carbohydrate Polymers, 96(2),578-585.
[19] Croisier, F. & Jérôme, C. (2013). Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 49(4), 780-792.
[20] Alishahi, A. & Aïder, M. (2012). Applications of chitosan in the seafood industry and aquaculture: a review. Food and Bioprocess Technology, 5(3), 817-830.
[21] Williams, P. A. & Phillips, G. (2009). Gum arabic, in Handbook of Hydrocolloids (Second Edition), Elsevier, 252-273.
[22] Ali, B. H., Ziada, A., & Blunden, G. (2009). Biological effects of gum arabic: a review of some recent research. Food and Chemical Toxicology, 47(1), 1-8.
[23] Jafari, S. M., Assadpoor, E., Bhandari, B., & He, Y. (2008). Nano-particle encapsulation of fish oil by spray drying. Food Research International, 41(2), 172-183.
[24] Desai, K. G. H. & Park, H. J. (2005). Recent developments in microencapsulation of food ingredients. Drying technology, 23(7), 1361-1394.
[25] Zhang, Y., an, C., Abbas, Sh., Eric, K., Zhang, X., Xia, S., & Jia, C.(2014). The effect of soy protein structural modification on emulsion properties and oxidative stability of fish oil microcapsules. Colloids and Surfaces B: Biointerfaces, 120, 63-70.
[26] De Souza, V. B., homazini, M., Barrientos, M. E., Nalin, C. M., Ferro-Furtado, R., Genovese, M., & Favaro-Trindade, C. S. (2018). Functional properties and encapsulation of a proanthocyanidin-rich cinnamon extract (Cinnamomum zeylanicum) by complex coacervation using gelatin and different polysaccharides. Food Hydrocolloids, 77, 297-306.
[27] Carneiro, H.C., Tonon, R.V., Grosso, C. R., & Hubinger, M. (2013). Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. Journal of Food Engineering, 115(4), 443-451.
[28] Dima, C., Pătraşcu, L., Cantaragiu, A., Alexe, P., & Dima, Ş. (2016). The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food chemistry, 195, 39-48.
[29] Kirk, S. & Sawyer, R. (1991). Pearson's composition and analysis of foods. Longman Group Ltd.
[30] Tan, C., Xie, J., Zhang, X., Cai, J., & Xia, S. (2016). Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocolloids, 57, 236-245.
[31] Abreu, F.O., Oliveira, E. F., Paula, H. C., & de Paula, R. C. (2012). Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydrate polymers, 89(4), 1277-1282.
[32] Espinosa-Andrews, H., Sandoval-Castilla, O., Vázquez-Torres, H., Vernon-Carter, E. J., & Lobato-Calleros, C. (2010). Determination of the gum Arabic–chitosan interactions by Fourier Transform Infrared Spectroscopy and characterization of the microstructure and rheological features of their coacervates. Carbohydrate Polymers, 79(3), 541-546.
[33] Sakloetsakun, D., Preechagoon, D., Bernkop-Schnürch, A., & Pongjanyakul, T. (2016). Chitosan–gum arabic polyelectrolyte complex films: physicochemical, mechanical and mucoadhesive properties. Pharmaceutical development and technology, 21(5), 590-599.
[34] Assadpour, E., Maghsoudlou, Y., Jafari, S. M., Ghorbani, M., & Aalami, M. (2016). Optimization of folic acid nano-emulsification and encapsulation by maltodextrin-whey protein double emulsions. International journal of biological macromolecules, 86, 197-207.
[35] You, G., Liu, X. L., & Zhao, M. M. (2018). Preparation and characterization of hsian-tsao gum and chitosan complex coacervates. Food Hydrocolloids, 74, 255-266.
[36] Hosseini, S. F., Zandi, M., Rezaei, M., & Farahmandghavi, F. (2013). Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: preparation, characterization and in vitro release study. Carbohydrate Polymers, 95(1), 50-56.
[37] Haider, J., Majeed, H., Williams, P. A., Safdar, W., & Zhong, F. (2017). Formation of chitosan nanoparticles to encapsulate krill oil (Euphausia superba) for application as a dietary supplement. Food Hydrocolloids, 63, 27-34.
[38] Butstraen, C. & Salaün, F. (2014). Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydrate polymers, 99, 608-616.
[39] Herculano, E.D., De Paula, H. C., De Figueiredo, E. A., Dias, F. G., & Pereira, V. A. (2015). Physicochemical and antimicrobial properties of nanoencapsulated Eucalyptus staigeriana essential oil. LWT-Food Science and Technology, 61(2), 484-491.
[40] Shabanpour, B., Kazemi, M., Ojagh, S. M., & Pourashouri, P. (2018). Bacterial cellulose nanofibers as reinforce in edible fish myofibrillar protein nanocomposite films. International journal of biological macromolecules, 117, 742-751.
[41] Kumar, S., Kaur, P., Bernela, M., Rani, R., & Thakur, R. (2016). Ketoconazole encapsulated in chitosan-gellan gum nanocomplexes exhibits prolonged antifungal activity. International journal of biological macromolecules, 93, 988-994.
[42] Antoniou, J., Liu, F., Majeed, H., & Zhong, F. (2015). Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: a comparative study. Food Hydrocolloids, 44, 309-319.
[43] Vongsvivut, J., Heraud, P., Zhang, W., Kralovec, J. A., McNaughton, D., & Barrow, C. J. (2012). Quantitative determination of fatty acid compositions in micro-encapsulated fish-oil supplements using Fourier transform infrared (FTIR) spectroscopy. Food chemistry, 135(2), 603-609.
[41] Vasile, F.E., Romero, A. M., Judis, M. A., & Mazzobre, M. F.(2016). Prosopis alba exudate gum as excipient for improving fish oil stability in alginate–chitosan beads. Food chemistry, 190, 1093-1101.
45. Luo, Y., Zhang, B., Whent, M., Yu, L. L., & Wang, Q. (2011). Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids and Surfaces B: Biointerfaces, 85(2), 145-152.
46. Klaypradit, W. & Huang, Y. W. (2008). Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT-Food Science and Technology, 41(6), 1133-1139.
47. Dammak, I. & do Amaral Sobral, P. J. (2018). Investigation into the physicochemical stability and rheological properties of rutin emulsions stabilized by chitosan and lecithin. Journal of Food Engineering, 229, 12-20.