[1] Lindequist, U, Niedermeyer, T.M.J., Jülich, W.D. (2005). The Pharmacological Potential of Mushrooms. Evidence-based compl. Alt. Medicine. 2, 285- 299.
[2] Pan, Y., Dong, S., Hao, Y., Zhou, Y., Ren, X., Wang, J., Wang, W., Chu, T. (2010). Ultrasonic-assisted extraction process of crude polysaccharides from Yunzhi mushroom and its effect on hydroxyproline and glycosaminoglycan levels. Carbohydr. Polym., 81(1), 93-96.
[3] Badalyan, S.M., Gharibyan, N.G., Kocharyan, A.E. (2007). Perspective in usage of bioactive substances of medicinal mushrooms in pharmaceutical and cosmetic industry. Int. J. Med. Mushr., 9(3), 275-280.
[4] Gao, Y., Lan, J., Dai, X., Ye, J., Zhou, Sh. (2004). A phase I/II study of Ling Zhi mushroom Ganoderma lucidum (W. curt.: Fr.) Lioyd (Aphyllophoro mycetideae) extract in patients with type II diabetes mellitus. Int. J. Med. Mushr., 6(1), 33-9.
[5] Zhang, H.N., Lin, Z.B. (2004). Hypoglycemic effect of Ganoderma lucidum polysaccharides. Acta. Pharmacol. Sin., 25, 191-195.
[6] Hikino, H., Konno, C., Mirin, Y., Hayashi, T. (1985). Isolation and hypoglycemic activity of ganoderans A and B, glycans of Ganoderma lucidum fruit bodies. Planta. Med., 51(4), 339 - 40.
[7] Apel K, Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol., 55, 373–99.
[8] Shahidi, F., Zhong, Y. (2015). Measurement of antioxidant activity. J. Funct. Foods, 18, 757-781.
[9] Halliwell, B., Aeschbach, R., Löliger, J., Aruoma, O.I. (1995). The characterization of antioxidants. Food and Chem. Toxicol., 33(7), 601-617.
[10] Kurd, F., Samavati, V. (2015). Water soluble polysaccharides from Spirulina platensis: Extraction and in vitro anti-cancer activity. Int. J. Biol. Macromolec., 74, 498–504.
[11] Kan, Y., Chen, T., Wu, Y., Wu, J., Wu, J. (2015). Antioxidant activity of polysaccharide extracted from Ganoderma lucidum using response surface methodology. Int. J. Biol. Macromolec., 72, 151–157.
[12] Zhang, A., Li, X., Chen, X., Yang, J., Sun, P. (2014). Antioxidant activity of polysaccharide extracted from Pleurotus eryngii using response surface methodology. Int. J. Biol. Macromolec., 65, 28-32.
[13] Zou, Y., Jiang, A., Tian, M. (2015). Extraction optimization of antioxidant polysaccharides from Auricularia auricula fruiting bodies. Food Sci. Technol., 35(3), 428-433.
[14] Wang, P., Chen, D., Jiang, D., Dong, X., Chen, P., Lin, Y. (2014). Alkali extraction and in vitro antioxidant activity of Monascus mycelium polysaccharides. J. Food Sci. Technol., 51(7), 1251-1259.
[15] Bellettini, M.B., Fiorda, F.A., Maieves, H.A., Teixeira, G.L., Avila, S., Hornung, P.S., Junior, A.M., Ribani, R.H. (2016). Fators affecting mushroom Pleurotus spp. Saudi J. Biol. Sci., In press, Available at: http://dx.doi.org/10.1016/j.sjbs.2016.12.005.
[16] Savoie, J.M., Salmones, D., Mata, G., (2007). Hydrogen peroxide concentration measured in cultivation substrates during growth and fruiting of the mushrooms. Agaricus bisporus and Pleurotus spp. J. Sci. Food Agric. 87, 1337–1344.
[17] Sanchez, C. (2010). Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl. Microbiol. Biotechnol., 85, 1321-1337.
[18] Jedinak, A., Sliva, D. (2009). Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway. Int. J. Oncol., 33(6), 1307-1313.
[19] Bobek P., Galbavy, S. (1999). Hypocholesterolemic and antiatherogenic effect of oyster mushroom (Pleurotus ostreatus) in rabbits. Nahrung., 43, 339–342.
[20] Bobek P, Ozdin L, Kuniak L. (1995). Antioxidative effect of oyster mushroom (Pleurotus ostreatus) in hypercholesterolemic rat. Pharmazie, 50(6), 441–442.
[21] Kunjadia P.D., Nagee A., Pandya P.Y., Mukhopadhyaya, P.N., Sanghvi, G.V. Dave, G.S. (2014). Medicinal and antimicrobial role of the oyster culinary-medicinal mushroom Pleurotus ostreatus (higher Basidiomycetes) cultivated on banana agrowastes in India. Int. J. Med. Mushr., 16(3), 227-38.
[22] Mazarei, F., Jooyandeh, H., Hojjati, M., Noshad, M. (2017). Polysaccharide of caper (Capparis spinose L.) Leaf: Extraction, optimization, antioxidant potential and antimicrobial activity. Int. J. Biol. Macromolec., 95, 224–231.
[23] Zhong, K., Lin, W., Wang, Q., Zhou, S. (2012). Extraction and radicals scavenging activity of polysaccharides with microwave extraction from mung bean hulls. Int. J. Biol. Macromolec., 51, 612–617.
[24] Blios, M.S. (1958). Antioxidant determinantions by the use of a stable free radical. Nature., 26,1199-1200.
[25] Solisova, M., Toma, S., Mason, T.J. (1997). Comparision of conventional and ultrasonically assosted extractions of pharmaceutically active compounds from Solvia officinalis. Ultrason. Sonochem., 4, 131-134.
[26] Khan, M.K., Abert-Vian, M., Fabiano-Tixier, A.S., Dangles, O., Chemat, F. (2010). Ultrasound assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem., 119(2), 851–858.
[27] Li H., Pordesimo L., Weiss J., (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Res. Int., 37, 731–738.
[28] Tahmouzi, S. (2014). Optimization of polysaccharides from Zagros oak leaf using RSM: Antioxidant and antimicrobial activities. Carbohydr. Polym., 106, 238–246.
[29] Jooyandeh, H., Noshad, M., and Khamirian, R.A. (2018). Modeling of ultrasound-assisted extraction, characterization and in vitro pharmacological potential of polysaccharides from Vaccinium arctostaphylos L. 2017. Int. J. Biol. Macromol., 107, 938-948.
[30] Yong-guang, B., Ding-long,Huang, XIAO-jun, Y., Yu-min, L., Min-xia, H. (2012). Study on ultrasonic-assisted extraction of polysaccharide of Atractylis macroceohala koidz of experiment, Energy Procedia, 7, 1778–1785.
[31] Zou, Y., Chen, X., Yang, W., Liu, Sh. (2011). Response surface methodology for optimization of the ultrasonic extraction of polysaccharides from Codonopsis pilosula, Carbohydr. Polym., 84, 503–508.
[32] Samavati, V. (2013). Polysaccharide extraction from Abelmoschus esculentus: Optimization by response surface methodology. Carbohydr. Polym., 95, 588-598.
[33] Wang, Y., Liua, Y., Hu, Y. (2014). Optimization of polysaccharides extraction from Trametes robiniophila and its antioxidant activities. Carbohydr. Polym., 93, 47–56.
[34] Zhong, K., Wang, Q. (2010). Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology. Carbohydr. Polym., 80, 19-25.
[35] Chen, W., Wang, W.P., Zhang, H. Sh., Huang, Q. (2012). Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulis mycelia using response surface methodology. Carbohydr. Polym., 87, 614-619.
[36] Rahimi, F., Tabarsa, M., Rezaei, M. (2016). Ulvan from green algae Ulvain testinalis: Optimization of ultrasound-assisted extraction and antioxidant activity. J. Appl. Phycol., 28, 2979–2990.
[37] Heydarian, M., Jooyandeh, H., Nasehi, B., and Noshad, M. (2017). Characterization of Hypericum perforatum polysaccharides with antioxidant and antimicrobial activities: Optimization based statistical modeling. International Journal of Biological Macromolecules 104 (2017) 287–293.
[38] Barry, H., Susanna, C. (1993). Lipid peroxidation: Its mechanism, measurement and significance. Am. J. Clin. Nutr., 57, 715–725.
[39] Lai, F., Wen, Q., Li, L., Wu, H., Li, X. (2010). Antioxidant activities of water-solublepolysaccharide extracted from mung bean (Vigna radiata L.) hull with ultrasonicassisted treatment. Carbohydr. Polym., 81, 323–329.
[40] Adeli, M., Samavati, V. (2015). Studies on the steady shear flow behavior and chemical properties of water-soluble polysaccharide from Ziziphus lotus fruit. Int. J. Biol. Macromolec., 72, 580–587.
[41] Afshari, K., Samavati, V., Shahidi S.A. (2015). Ultrasonic-assisted extraction and in-vitro antioxidant activity of polysaccharide from Hibiscus leaf. Int. J. Biol. Macromolec., 74, 558–567.
[42] Samavati, V., Lorestani, M. & Joolazadeh, S. (2014). Identification and characterization of hydrocolloid from Cordia myxa leaf. Int. J. Biol. Macromolec., 65, 215–221.
[43] Tian, Y., Zeng, H., Xu, Z., Zheng, B., Lin, Y., Gan, C., Martin Lo, Y. (2012). Ultrasonic-assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricus bisporus). Carbohydr. Polym., 88, 522–529.
[44] Samavati, V., Skandari, F. (2014). Recovery, chemical and rheological characterization of gum from Assyrian pulm. Int. J. Biol. Macromolec., 67, 172–179.
[45] Eskandari, M., Samavati, V. (2015). Sono-assisted extraction of alcohol-insoluble extract from Althaea rosea: Purification and chemical analysis. Int. J. Biol. Macromolec., 72, 347–355.
[46] Jooyandeh, H., Samavati, V. (2017). Extraction of crude extract from Malva neglecta leaves and evaluation of its free radical scavenging activities· Iranian Food Sci. Technol. Res. J., 13(1), 167-179.
[47] Qi, H., Liu, X., Ma, J., Zhang, Q., Li, Z. (2010). In vitro antioxidant activity of acetylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). J. Med. Plants Res., 4(23), 2445-2451.
[48] Balasundram, N., Sundram K., Samman S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem., 99, 191–203.
[49] Vamanu, E. (2012). Biological activities of the polysaccharides produced in submerged culture of two edible Pleurotus ostreatus mushrooms. J. Biomed. Biotechnol., Article ID 565974, 1-8.