استخراج پلی‌ساکارید محلول در آب از قارچ خوراکی صدفی به‌کمک امواج فراصوت و بررسی فعالیت آنتی‌اکسیدانی آن

نویسندگان
1 عضو هیات علمی دانشگاه
2 مدیر آزمایشگاه
چکیده
این پژوهش به­منظور بررسی تأثیر امواج فراصوت در توان­های 80-40 درصد (معادل 232-464 وات)، دماهای استخراج 80-50 درجه سانتی­گراد و زمان­های استخراج 3010 دقیقه بر میزان راندمان استخراج پلی­ساکارید محلول در آب از قارچ خوراکی صدفی (Pleurotus ostreatus) انجام پذیرفت. بهینه­یابی فرایند استخراج و بررسی تأثیر اثرات اصلی و متقابل فاکتورها با استفاده از روش سطح پاسخ و به کمک طرح BoxBehnken با سه متغیر و در سه سطح و 5 تکرار در نقطه مرکزی انجام شد. همچنین پلی­ساکارید استخراج شده از نظر ظرفیت آنتی­اکسیدانی (مهار رادیکال OH و DPPH) مورد بررسی قرار گرفت. بهینه­سازی بازده استخراج پلی­ساکارید به کمک روش سطح پاسخ نشان داد که ترکیبی از توان امواج فراصوت 06/58 درصد (معادل 337 وات)، دمای استخراج 15/65 درجه سانتی­گراد و زمان امواج­دهی 72/21 دقیقه باعث بیشترین بازده (71/17 درصد) استخراج گردید. نتایج حاصل از بررسی­ فعالیت آنتی­اکسیدانی نشان داد که هرچند پلی­ساکارید استخراجی در مقایسه با آنتی­اکسیدان­های طبیعی اسید آسکوربیک و سنتزی BHT از قابلیت کمتری در جذب رادیکال­های آزاد برخوردار بود اما خواص ضداکسایشی قابل قبولی از خود نشان داد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Extraction of polysaccharide from Pleurotus ostreatus by ultrasound and evaluation of its antioxidant activity

نویسندگان English

Hossein Jooyandeh 1
Zahra Haji Ebrahimi Forushani 2
1 Faculty member
2 lab manager
چکیده English

The aim of this study was to investigate the effect of ultrasound power at 40 to 80 percent (equal to 232-464 W), extraction temperature (50 to 80 °C) and extraction time (10 to 30 min) on the soluble polysaccharide extraction from the Pleurotus ostreatus. The response surface methodology using Box-Behnken design (with three variables, three levels and 5 replications at central point) was applied to optimize extraction conditions and evaluation of the effects of main factors and their interactions. Antioxidant activity (scavenging ability of OH and DPPH) of extracted polysaccharide were also evaluated. Optimization of polysaccharide extraction yield using response surface methodology indicated that combination of the ultrasonic power of 58.06 percent (~337 W), extraction temperature of 65.15 °C and extraction time of 21.72 min resulted in maximum extraction yield (17.71%). Among three independent variables, ultrasonic power had the highest and temperature had the lowest impact on the rate of extraction. The results from antioxidant activity evaluation showed that even though extracted polysaccharide had lower absorbance capacity of the free radicals in comparison with control samples (ascorbic acid and BHT), but it revealed an acceptable antioxidant property.

کلیدواژه‌ها English

Optimization
Pleurotus ostreatus
response surface methodology
Antioxidant activity
[1] Lindequist, U, Niedermeyer, T.M.J., Jülich, W.D. (2005). The Pharmacological Potential of Mushrooms. Evidence-based compl. Alt. Medicine. 2, 285- 299.
[2] Pan, Y., Dong, S., Hao, Y., Zhou, Y., Ren, X., Wang, J., Wang, W., Chu, T. (2010). Ultrasonic-assisted extraction process of crude polysaccharides from Yunzhi mushroom and its effect on hydroxyproline and glycosaminoglycan levels. Carbohydr. Polym., 81(1), 93-96.
[3] Badalyan, S.M., Gharibyan, N.G., Kocharyan, A.E. (2007). Perspective in usage of bioactive substances of medicinal mushrooms in pharmaceutical and cosmetic industry. Int. J. Med. Mushr., 9(3), 275-280.
[4] Gao, Y., Lan, J., Dai, X., Ye, J., Zhou, Sh. (2004). A phase I/II study of Ling Zhi mushroom Ganoderma lucidum (W. curt.: Fr.) Lioyd (Aphyllophoro mycetideae) extract in patients with type II diabetes mellitus. Int. J. Med. Mushr., 6(1), 33-9.
[5] Zhang, H.N., Lin, Z.B. (2004). Hypoglycemic effect of Ganoderma lucidum polysaccharides. Acta. Pharmacol. Sin., 25, 191-195.
[6] Hikino, H., Konno, C., Mirin, Y., Hayashi, T. (1985). Isolation and hypoglycemic activity of ganoderans A and B, glycans of Ganoderma lucidum fruit bodies. Planta. Med., 51(4), 339 - 40.
[7] Apel K, Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant. Biol., 55, 373–99.
[8] Shahidi, F., Zhong, Y. (2015). Measurement of antioxidant activity. J. Funct. Foods, 18, 757-781.
[9] Halliwell, B., Aeschbach, R., Löliger, J., Aruoma, O.I. (1995). The characterization of antioxidants. Food and Chem. Toxicol., 33(7), 601-617.
[10] Kurd, F., Samavati, V. (2015). Water soluble polysaccharides from Spirulina platensis: Extraction and in vitro anti-cancer activity. Int. J. Biol. Macromolec., 74, 498–504.
[11] Kan, Y., Chen, T., Wu, Y., Wu, J., Wu, J. (2015). Antioxidant activity of polysaccharide extracted from Ganoderma lucidum using response surface methodology. Int. J. Biol. Macromolec., 72, 151–157.
[12] Zhang, A., Li, X., Chen, X., Yang, J., Sun, P. (2014). Antioxidant activity of polysaccharide extracted from Pleurotus eryngii using response surface methodology. Int. J. Biol. Macromolec., 65, 28-32.
[13] Zou, Y., Jiang, A., Tian, M. (2015). Extraction optimization of antioxidant polysaccharides from Auricularia auricula fruiting bodies. Food Sci. Technol., 35(3), 428-433.
[14] Wang, P., Chen, D., Jiang, D., Dong, X., Chen, P., Lin, Y. (2014). Alkali extraction and in vitro antioxidant activity of Monascus mycelium polysaccharides. J. Food Sci. Technol., 51(7), 1251-1259.
[15] Bellettini, M.B., Fiorda, F.A., Maieves, H.A., Teixeira, G.L., Avila, S., Hornung, P.S., Junior, A.M., Ribani, R.H. (2016). Fators affecting mushroom Pleurotus spp. Saudi J. Biol. Sci., In press, Available at: http://dx.doi.org/10.1016/j.sjbs.2016.12.005.
[16] Savoie, J.M., Salmones, D., Mata, G., (2007). Hydrogen peroxide concentration measured in cultivation substrates during growth and fruiting of the mushrooms. Agaricus bisporus and Pleurotus spp. J. Sci. Food Agric. 87, 1337–1344.
[17] Sanchez, C. (2010). Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl. Microbiol. Biotechnol., 85, 1321-1337.
[18] Jedinak, A., Sliva, D. (2009). Pleurotus ostreatus inhibits proliferation of human breast and colon cancer cells through p53-dependent as well as p53-independent pathway. Int. J. Oncol., 33(6), 1307-1313.
[19] Bobek P., Galbavy, S. (1999). Hypocholesterolemic and antiatherogenic effect of oyster mushroom (Pleurotus ostreatus) in rabbits. Nahrung., 43, 339–342.
[20] Bobek P, Ozdin L, Kuniak L. (1995). Antioxidative effect of oyster mushroom (Pleurotus ostreatus) in hypercholesterolemic rat. Pharmazie, 50(6), 441–442.
[21] Kunjadia P.D., Nagee A., Pandya P.Y., Mukhopadhyaya, P.N., Sanghvi, G.V. Dave, G.S. (2014). Medicinal and antimicrobial role of the oyster culinary-medicinal mushroom Pleurotus ostreatus (higher Basidiomycetes) cultivated on banana agrowastes in India. Int. J. Med. Mushr., 16(3), 227-38.
[22] Mazarei, F., Jooyandeh, H., Hojjati, M., Noshad, M. (2017). Polysaccharide of caper (Capparis spinose L.) Leaf: Extraction, optimization, antioxidant potential and antimicrobial activity. Int. J. Biol. Macromolec., 95, 224–231.
[23] Zhong, K., Lin, W., Wang, Q., Zhou, S. (2012). Extraction and radicals scavenging activity of polysaccharides with microwave extraction from mung bean hulls. Int. J. Biol. Macromolec., 51, 612–617.
[24] Blios, M.S. (1958). Antioxidant determinantions by the use of a stable free radical. Nature., 26,1199-1200.
[25] Solisova, M., Toma, S., Mason, T.J. (1997). Comparision of conventional and ultrasonically assosted extractions of pharmaceutically active compounds from Solvia officinalis. Ultrason. Sonochem., 4, 131-134.
[26] Khan, M.K., Abert-Vian, M., Fabiano-Tixier, A.S., Dangles, O., Chemat, F. (2010). Ultrasound assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem., 119(2), 851–858.
[27] Li H., Pordesimo L., Weiss J., (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Res. Int., 37, 731–738.
[28] Tahmouzi, S. (2014). Optimization of polysaccharides from Zagros oak leaf using RSM: Antioxidant and antimicrobial activities. Carbohydr. Polym., 106, 238–246.
[29] Jooyandeh, H., Noshad, M., and Khamirian, R.A. (2018). Modeling of ultrasound-assisted extraction, characterization and in vitro pharmacological potential of polysaccharides from Vaccinium arctostaphylos L. 2017. Int. J. Biol. Macromol., 107, 938-948.
[30] Yong-guang, B., Ding-long,Huang, XIAO-jun, Y., Yu-min, L., Min-xia, H. (2012). Study on ultrasonic-assisted extraction of polysaccharide of Atractylis macroceohala koidz of experiment, Energy Procedia, 7, 1778–1785.
[31] Zou, Y., Chen, X., Yang, W., Liu, Sh. (2011). Response surface methodology for optimization of the ultrasonic extraction of polysaccharides from Codonopsis pilosula, Carbohydr. Polym., 84, 503–508.
[32] Samavati, V. (2013). Polysaccharide extraction from Abelmoschus esculentus: Optimization by response surface methodology. Carbohydr. Polym., 95, 588-598.
[33] Wang, Y., Liua, Y., Hu, Y. (2014). Optimization of polysaccharides extraction from Trametes robiniophila and its antioxidant activities. Carbohydr. Polym., 93, 47–56.
[34] Zhong, K., Wang, Q. (2010). Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology. Carbohydr. Polym., 80, 19-25.
[35] Chen, W., Wang, W.P., Zhang, H. Sh., Huang, Q. (2012). Optimization of ultrasonic-assisted extraction of water-soluble polysaccharides from Boletus edulis mycelia using response surface methodology. Carbohydr. Polym., 87, 614-619.
[36] Rahimi, F., Tabarsa, M., Rezaei, M. (2016). Ulvan from green algae Ulvain testinalis: Optimization of ultrasound-assisted extraction and antioxidant activity. J. Appl. Phycol., 28, 2979–2990.
[37] Heydarian, M., Jooyandeh, H., Nasehi, B., and Noshad, M. (2017). Characterization of Hypericum perforatum polysaccharides with antioxidant and antimicrobial activities: Optimization based statistical modeling. International Journal of Biological Macromolecules 104 (2017) 287–293.
[38] Barry, H., Susanna, C. (1993). Lipid peroxidation: Its mechanism, measurement and significance. Am. J. Clin. Nutr., 57, 715–725.
[39] Lai, F., Wen, Q., Li, L., Wu, H., Li, X. (2010). Antioxidant activities of water-solublepolysaccharide extracted from mung bean (Vigna radiata L.) hull with ultrasonicassisted treatment. Carbohydr. Polym., 81, 323–329.
[40] Adeli, M., Samavati, V. (2015). Studies on the steady shear flow behavior and chemical properties of water-soluble polysaccharide from Ziziphus lotus fruit. Int. J. Biol. Macromolec., 72, 580–587.
[41] Afshari, K., Samavati, V., Shahidi S.A. (2015). Ultrasonic-assisted extraction and in-vitro antioxidant activity of polysaccharide from Hibiscus leaf. Int. J. Biol. Macromolec., 74, 558–567.
[42] Samavati, V., Lorestani, M. & Joolazadeh, S. (2014). Identification and characterization of hydrocolloid from Cordia myxa leaf. Int. J. Biol. Macromolec., 65, 215–221.
[43] Tian, Y., Zeng, H., Xu, Z., Zheng, B., Lin, Y., Gan, C., Martin Lo, Y. (2012). Ultrasonic-assisted extraction and antioxidant activity of polysaccharides recovered from white button mushroom (Agaricus bisporus). Carbohydr. Polym., 88, 522–529.
[44] Samavati, V., Skandari, F. (2014). Recovery, chemical and rheological characterization of gum from Assyrian pulm. Int. J. Biol. Macromolec., 67, 172–179.
[45] Eskandari, M., Samavati, V. (2015). Sono-assisted extraction of alcohol-insoluble extract from Althaea rosea: Purification and chemical analysis. Int. J. Biol. Macromolec., 72, 347–355.
[46] Jooyandeh, H., Samavati, V. (2017). Extraction of crude extract from Malva neglecta leaves and evaluation of its free radical scavenging activities· Iranian Food Sci. Technol. Res. J., 13(1), 167-179.
[47] Qi, H., Liu, X., Ma, J., Zhang, Q., Li, Z. (2010). In vitro antioxidant activity of acetylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). J. Med. Plants Res., 4(23), 2445-2451.
[48] Balasundram, N., Sundram K., Samman S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem., 99, 191–203.
[49] Vamanu, E. (2012). Biological activities of the polysaccharides produced in submerged culture of two edible Pleurotus ostreatus mushrooms. J. Biomed. Biotechnol., Article ID 565974, 1-8.