بررسی میزان افزایش ترکیبات فنولی برگه شلغم در محلول اسمزی حاوی عصاره چای ترش و بررسی کنتیک خشک‌کردن آن با هوای داغ

نویسندگان
1 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران. صندوق پستی 1163-91775 تلفن: 05138805778 آدرس ایمیل : fshahidi@um.ac.ir
2 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران. صندوق پستی 1163-91775 تلفن: 05138805778 آدرس ایمیل ayask0946@gmail.com
چکیده
در این پژوهش، آبگیری اسمزی از برش‌های شلغم با هدف غنی‌سازی آن با ترکیبات فنولی چای ترش و سپس خشک‌کردن آن‌ها با استفاده هوای داغ صورت گرفت. متغیرهای مستقل مرحله‌ی آبگیری اسمزی غلظت محلول ساکارز (30، 50 و 70 درصد) ، مدت‌زمان اسمز (45، 75 و 105 دقیقه) و دمای محلول اسمزی(60، 70 و80 درجه سانتی گراد ) در نظر گرفته شد. متغیرهای وابسته (پاسخ) این مرحله شدت آب‌زدایی، جذب مواد جامد، کاهش وزن و میزان جذب ترکیبات فنولی بودند. نتایج نشان داد که متغییرهای مستقل اثر معنی‌دار و محسوسی بر متغییرهای وابسته دارند. شرایط بهینه مرحله‌ی آبگیری اسمزی با هدف شدت آب‌زدایی و جذب ترکیبات فنلی بیشتر و کمترین جذب مواد جامد، غلظت 35% محلول اسمزی، زمان 105 دقیقه و دمای °C 80 تعیین شد. برگه‌های شلغم طبق شرایط بهینه محاسبه شده، اسمز شدند و در خشک‌کن هوای داغ در دماهای 60، 70 و80 درجه سانتی گراد تا رسیدن به وزن ثابت خشک گردیدند. نسبت‌های رطوبتی برای هر سه دما با 10 مدل رایج خشک کردن هوای داغ برازش شدند. مدل دوجمله‌ای دارای بهترین برازش با داده‌های آزمایشی بود. میزان ضریب نفوذ مؤثر برای دماهای 60، 70 و80 درجه سانتی گراد به ترتیب 9-10×83/1، 9-10×03/2 و 9-10×04/3 مترمربع بر ثانیه و میزان انرژی فعال‌سازی برای دماهای 60، 70 و80 درجه سانتی‌گراد 1221/25 کیلوژول بر مول محاسبه شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of Turnip slice phenolic component increasing by osmosis treatment in Roselle extract and investigation of its hot-air drying kinetics

نویسندگان English

fakhri shahidi 1
mohammad maleki 2
1 : Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), POBox: 91775-1163, Mashhad, Iran
2 : Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), POBox: 91775-1163, Mashhad, Iran
چکیده English

In this study, turnip slices was osmotic dehydrated in rosella extract for polyphenolic enrichment purpose which further dried using hot air drying technique. Osmotic process variables were the concentration of sucrose solution (30, 50 and 70 %), process time (40, 75 and 105 min) and the solution temperature (60, 70 and 80°C). The quality of osmotic dehydration-enrichment step was evaluated by measuring water loss, solid gain, weight reduction and phenolic compounds absorption. All variable were effective on measured parameters. Optimized osmotic condition were 35% of sucrose concentration, 105 min for process time and temperature of 80°C to reach the most desirable responses including maximum water loss and weight reduction and phenolic compounds absorption as well as minimum solid gain. Processed turnip slices at optimum condition were then air dried at 60, 70 and 80°C. Moisture ratio during drying time was measured for every temperature and used for determination of best drying kinetic model. 10 models were fitted to experimental data and the fitting quality was evaluated using statistical parameters. It was found that two term models predicts the moisture changes well. Effective diffusion coefficient s were 1.83E-9, 2.03E-9 and 3.04E-9 for 60, 70 and 80°C drying temperatures respectively. Arrhenius model was used for activation energy determination and it calculated as 25.12 Kj/mol.

کلیدواژه‌ها English

Turnip
Phenol. Hot Air Drying
Roselle
1- Wakchaure, G. C., Manikandan, K., Mani, I., & Shirur, M. 2010. Kinetics of thin layer drying of button ushroom. Journal of Agricultural Engineering, 47(4), 41-46.
2- Sharma, G. P., & Prasad, S. 2006. Optimization of process parameters for microwave drying of garlic cloves. Journal of Food Engineering, 75(4), 441-446.
3- Bal, L. M., Kar, A., Satya, S., & Naik, S. N. 2010. Drying kinetics and effective moisture diffusivity of bamboo shoot slices undergoing microwave drying. International Journal of Food Science & Technology, 45(11), 2321-2328.
4- Akbarian, M., Ghasemkhani, N., & Moayedi, F. 2014. Osmotic dehydration of fruits in food industrial: a review. Int. J. Biosci., 4(1), 42-57.
5- Alzamora, Stella M, Daniela Salvatori, María S Tapia, Aurelio López-Malo, Jorge Welti-Chanes and Pedro Fito,2005, "Novel Functional Foods from Vegetable Matrices Impregnated with Biologically Active Compounds." Journal of Food Engineering ,67(1): 205-214.
6- Bellary, A. N., & Rastogi, N. K. 2016. Ways and means for the infusion of bioactive constituents in solid foods. Critical Reviews in Food Science and Nutrition, 56(7), 1126-1145.
7- Rózek, A., García-Pérez, J. V., López, F., Güell, C., & Ferrando, M. 2010. Infusion of grape phenolics into fruits and vegetables by osmotic treatment: phenolic stability during air drying. Journal of Food Engineering, 99(2), 142-150.
8- Cid-Ortega, S and JA Guerrero-Beltrán, 2015, "Roselle Calyces (Hibiscus Sabdariffa), an Alternative to the Food and Beverages Industries: A Review." Journal of Food Science and Technology, 52(11) : 6859-6869.
9- Bellary, A. N., & Rastogi, N. K. 2016. Ways and means for the infusion of bioactive constituents in solid foods. Critical Reviews in Food Science and Nutrition, 56(7), 1126-1145.
10- Daniel, Leyva, E Diana, Blanca E Barragán Huerta, Mario G Vizcarra Mendoza and Irasema Anaya Sosa, 2013, "Effect of Drying Conditions on the Retention of Phenolic Compounds, Anthocyanins and Antioxidant Activity of Roselle (Hibiscus Sabdariffa L.) Added to Yogurt." International Journal of Food Science & Technology ,48(11): 2283-2291.
11- Moore KL, Patel J, Jaroni D, Friedman M, Ravishankar S 2011. Antimicrobial activity of apple, hibiscus, olive, and hydrogen peroxide formulations against Salmonella enterica on organic leafy greens. J. Food Prot. 74:1676-1683.
12- Moate, P. J., Dalley, D. E., Roche, J. R., Gow, C. B., & Grainger, C. 2002. Effects on milk production of increased dietary crude protein by feeding nitogen-fertilised turnips or lupins to dairy cows in mid-lactation. Australian Journal of Experimental Agriculture, 42(1), 1-6.
13- Fernandes, F. A., Rodrigues, S., Law, C. L., & Mujumdar, A. S. 2011. Drying of exotic tropical fruits: a comprehensive review. Food and Bioprocess Technology, 4(2), 163-185.
14- Bergman, T. L., Incropera, F. P., DeWitt, D. P., & Lavine, A. S. 2011. Fundamentals of Heat and Mass Transfer. John Wiley & Sons.
15- Horwitz, W., Chichilo, P., & Reynolds, H. 1970. Official methods of analysis of the Association of Official Analytical Chemists. Official methods of analysis of the Association of Official Analytical Chemists.
16- Jung, E., Kim, Y., & Joo, N. 2013. Physicochemical properties and antimicrobial activity of Roselle (Hibiscus sabdariffa L.). Journal of the Science of Food and Agriculture, 93(15), 3769-3776.
17- Rezaie, M., Farhoosh, R., Iranshahi, M., Sharif, A., & Golmohamadzadeh, S. 2015. Ultrasonic-assisted xtraction of antioxidative compounds from Bene (Pistacia atlantica subsp. mutica) hull using various solvents of different physicochemical properties. Food Chemistry, 173, 577-583.
18- Wang, Z., Sun, J., and Liao, X. 2007. Mathematical modeling of hot air drying of thin layer of apple pomace. Food Research International, 40(39-46).
19- Akpinar, E.K., and Bicer, Y. 2008. Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun. Energy Conversion Manag. 49:1367– 1375.
20- Crank, J.1979. The Mathematics of Diffusion. (Oxford University Press, USA).-
21- Lopez, A., Iguaz, A., Esnoz, A., and Virseda, P. 2000. Thin-layer drying behaviour of vegetable waste from wholesale market. Drying Technology, 18: 995–1006.
22- Akpinar, E., Midilii, A., and Bicer, Y. 2003. Single layer drying behavior of potato slices in a convective cyclone dryer and mathematical modeling. Energy Convection and Management, 44: 1689-1705.
23- Bas,D., Boyanci, I.H., 2007. Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78: 836-845.
24-Mundada, M., Singh, B., & Maske, S. 2010. Optimisation of processing variables affecting the osmotic dehydration of pomegranate arils. International Journal of Food Science & Technology, 45(8), 1732-1738.
25-İspir, A., & Toğrul, İ. T. 2009. Osmotic dehydration of apricot: Kinetics and the effect of process parameters. Chemical Engineering Research and Design, 87(2), 166-180.
26-Kowalski, S. J., Łechtańska, J. M., & Szadzińska, J. 2013. Quality aspects of fruit and vegetables dried convectively with osmotic pretreatment. Chemical and Process Engineering, 34(1), 51-62.
27-Mundada, Manoj, Bahadur Singh Hathan and Swati Maske, 2011, "Mass Transfer Kinetics During Osmotic Dehydration of Pomegranate Arils." Journal of food Science, 76(1): E31-E39.
28-Shi, J., & Xue, S. J. 2008. Application and development of osmotic dehydration technology in food processing. In Advances in Food Dehydration (pp. 205-226). CRC Press.
29- Romdhane, N. G., Djendoubi, N., Bonazzi, C., Kechaou, N., & Mihoubi, N. B. 2016. Effect of combined Air-Drying-Osmotic dehydration on kinetics of Techno-functional properties, color and total Phenol contents of Lemon (Citrus limon. v. lunari) Peels. International Journal of Food Engineering, 12(6), 515-525.
30- Ahmed, I., Qazi, I. M., & Jamal, S. 2016. Developments in osmotic dehydration technique for the preservation of fruits and vegetables. Innovative Food Science & Emerging Technologies, 34, 29-43.
31- Mujica-Paz, H., Valdez-Fragoso, A., López-Malo, A., Palou, E., & Welti-Chanes, J. 2003. Impregnation and osmotic dehydration of some fruits: effect of the vacuum pressure and syrup concentration. Journal of Food Engineering, 57(4), 305-314.
32- Adsare, S. R., Bellary, A. N., Sowbhagya, H., Baskaran, R., Prakash, M., & Rastogi, N. K. 2016. Osmotic treatment for the impregnation of anthocyanin in candies from Indian gooseberry (Emblica officinalis). Journal of Food Engineering, 175, 24-32.
33- George, J. M., Selvan, T. S., & Rastogi, N. K. 2016. High-pressure-assisted infusion of bioactive compounds in apple slices. Innovative Food Science & Emerging Technologies, 33, 100-107.
34- Rózek, Aleksandra, Isabel Achaerandio, María Pilar Almajano, Carme Güell, Francisco López and Montserrat Ferrando, 2007, "Solid Foodstuff Supplemented with Phenolics from Grape: Antioxidant Properties and Correlation with Phenolic Profiles." Journal of Agricultural and Food Chemistry, 55(13): 5147-5155.
35- Bellary, A. N., & Rastogi, N. K. 2016. Ways and means for the infusion of bioactive constituents in solid foods. Critical Reviews in Food Science and Nutrition, 56(7), 1126-1145.
36- Bellary, Ashwini N, HB Sowbhagya and Navin K Rastogi, 2011, "Osmotic Dehydration Assisted Impregnation of Curcuminoids in Coconut Slices." Journal of Food Engineering, 105(3): 453-459.
37- Rastogi, N., Raghavarao, K., Niranjan, K., & Knorr, D. 2002. Recent developments in osmotic dehydration: methods to enhance mass transfer. Trends in Food Science & Technology, 13(2), 48-59.
38- Rastogi, N.K., Angersbach, A., Knorr, D., 2000. Evaluation of mass transfer mechanisms during osmotic treatment of plant materials. Journal of Food Science 65, 1016–1021.
39- Shene, C., Cabezas, M. J., & Bravo, S. 2003. Effect of drying air temperature on drying kinetics parameters and fructan content in Helianthus tuberosus and Cichorium intybus. Drying Technology, 21(5), 945-956.
40-Hassini, L.; Azzouz, S.; Peczalski, R.; Belghith, A.2007. Estimation of potato moisture diffusivity from convective drying kinetics with correction for shrinkage. Journal of Food Engineering . 79, 47–56.