مدل سازی کارایی فرآیند اولترافیلتراسیون در تصفیه شربت خام چغندر قند میکروفیلترشده به روش شبکه عصبی مصنوعی

نویسندگان
1 گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران.
2 گروه شیمی مواد غذایی، پژوهشکده علوم و صنایع غذایی، پارک علم و فناوری خراسان رضوی، مشهد، ایران.
چکیده
فرآیند اولترافیلتراسیون به عنوان یکی از فرآیندهای غشایی مبتنی بر فشار می-تواند ‌به عنوان روشی نوین، جایگزین روش مرسوم در صنعت قند گردد. در این تحقیق کاهش سختی، افزایش درصد دفع ترکیبات غیرقندی و بهبود خلوص جریان تراوه طی تصفیه شربت خام چغندر با فرآیند اولترافیلتراسیون به روش شبکه عصبی مصنوعی مدل سازی شد. فرآیند اولترافیلتراسیون در سه درجه حرارت 30، 40 و 50 درجه سانتی گراد، سه فشار در عرض غشاء 1، 2 و 3 بار در هشت فاصله زمان مساوی از 1 تا 60 دقیقه انجام شد. بهترین مدل برای کاهش سختی با یک لایه پنهان ، تعداد 13 نورون، تابع انتقال تانژانت ، قانون یادگیری مومنتوم و درصد داده های 40 ، 35 و 25 به ترتیب برای آموزش، ارزیابی و آزمون بدست آمد. تغییرات درصد دفع ترکیبات غیرقندی با یک لایه پنهان، تعداد 15 نورون، تابع انتقال تانژانت، قانون یادگیری لونبرگ و اختصاص50، 5 و 45 درصد از داده ها برای آموزش، ارزیابی و آزمون مدل کمترین خطا و بیشترین ضریب همبستگی را طی مدل سازی داشت. بهبود خلوص جریان تراوه طی اولترافیلتراسیون نیز با یک لایه پنهان، تعداد 18 نورون، تابع انتقال سیگموئید، قانون یادگیری لونبرگ و درصد داده های 60، 15 و 25 برای آموزش، ارزیابی و آزمون بهترین شبکه را ایجاد نمود. همچنین بیشترین ضریب همبستگی بین داده های آزمایشگاهی و مقادیر های پیش بینی شده با مدل برای تغییرات سختی، درصد دفع ترکیبات غیرقندی و خلوص به ترتیب 892/0 ، 985/0 و 985/0 بدست آمد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modeling the Efficiency of Ultrafiltration Process in Purification of Microfiltered Raw Sugar Beet juice by Artificial Neural Network

نویسندگان English

Tina Shayan 1
vahid hakimzadeh 1
mostafa shahidi noghabi 2
1 Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.
2 Department of Food Chemistry, Research Institute of Food Science and Technology, Mashhad, Iran
چکیده English

The ultrafiltration process as one of the membrane processes based on pressure can replace with the conventional method of liming-carbonation as a new method in sugar industry. In this research, reduction of hardness, increasing the non-sugar rejection components and improving the purity of permeate flow were modeled during the treatment of raw beet syrup with ultrafiltration by artificial neural network. The ultrafiltration process was carried out at three temperatures of 30, 40 and 50 ° C, three pressures in the membrane 1, 2 and 3 times in eight intervals of equal time of 1 to 60 minutes. The best model for reduction of hardness was obtained with a hidden layer, the number of 13 neurons, the tangent transfer function, the momentum learning law, and the percentage of data 40, 35, and 25 for training, evaluation, and test, respectively. The variation of non-sugar rejection compounds with a hidden layer, 15 neurons, tangent transfer function, Levenberg learning law, and assigning 50, 5 and 45 percent of the data to training, evaluating and testing with the least error and the highest correlation coefficient during modeling. Improvement of the purity of permeate flow during ultrafiltration with a hidden layer, 18 neurons, sigmoid transfer function, Levenberg learning law and data percentages 60, 15 and 25 for training, evaluation, and testing created the best network. Also, the highest correlation coefficient between laboratory data and predicted values with the model was obtained for hardness variation, non-sugar rejection compounds and purity, 0.892, 0.985 and 0.985 respectively.

کلیدواژه‌ها English

Correlation Coefficient
Neural Network
Modeling
Tangent
ultrafiltration
[1] Djuri, M., Gyura, J. and Zavargo, Z. 2004. The analysis of process variables influencing some characteristics of permeate from ultra and nanofiltration in sugar beet processing. Desalination 169 167-183.
[2] Balakrishnan, M., Dau, M. and Bhagat, J. 2000. Ultrafiltration for juice purification in plantation white sugar manufacture. International Sugar Journal 102, 21-25.
[3] Hinkova, A., Bubnik, Z., Kadlec, P. and Pridal, J. 2002. Potentials of separation membranes in the sugar industry. Separation and Purification Technology 26, 101-110.
[4] Ghosh, A.M., and Balakrishnan, M. 2003. Pilot demonstration of sugarcane juice ultrafiltration in an India sugar factory. Journal of Food Engineering 58, 143-150.
[5] Gyura, J. Šereš, Z. Eszterle, M. 2005. Influence of operating parameters on separation of green syrup colored matter from sugar beet by ultra- and nanofiltration. Journal of Food Engineering. 66, 89–96.
[6] Vern, C. 1995. The beet sugar factory in the future. International Sugar Journal. 97, 310-314.
[7] Hamachi, M, Gupta, B.B. and Ben Aim, R., Ultrafiltration: a means for decolorization of cane sugar solution. Separation and Purification Technology, 30 (2003), 229-239.
[8] Hanssens, T.R., Vannispen, J.G. M., Koerts, K. and Nie, L.H.de. 1984. Ultrafiltration an alternative for raw juice purification in the beet sugar industry. Zukerind, 109, 16-24.
[9] Misra, S.N., Balakrishnan, M. and Ghosh, A.M. 2000. Improvement in clarified juice characteristics through ultrafiltration. Proc. S.T.A.I., 62, 28-36.
[10] Delgerange, N., Cabassud, C., Cabassud, M., Durand-Bourlier, L., and Lain, J.M. 1998. Neural network for prediction of ultrafiltration transmembrane pressure application to drink water. Journal of Membrane Science, 150, pp. 111–123.
[11] Masciola, D. A. Viadero, R.C and Reed, B.E. 2001. UF flux prediction for oil-in-water emulsions: Anal Series Resistance. Journal of Membrane Science. 184 197.
[12] Shahidi Noghabi, M. Razavi, S.M.A and Mousavi, S. M. 2012. Prediction of permeate flux and ionic compounds rejection of sugar beet press water nanofiltration using artificial neural networks. Desalination and Water Treatment, 44:1-3, 83-91.
[13] Hakimzadeh,V., Razavi, S.M.A., & Pirouzifard, M.K. 2006 .The potential of microfiltration and ultrafiltration process in purification of raw sugar beet juice. Desalination, 200: 520–522.
[14] ICUMSA .2000. The determination of calcium in sugar products by EDTA titration. Method GS8/2/3/4-9.
[15] Razavi, S.M.A. Mousavi, S. M and Mortazavi, S. A. 2003. Dynamic prediction of milk ultrafiltration performance: a neural network approach. Chemical Engineering Science, 58 4185–4195
[16] Salehi, F. and Razavi, S.M.A. 2012. Dynamic modeling of flux and total hydraulic resistance in nano filtration treatment of regeneration waste brine using artificial neural network. Desalination and Water Treatment, 41: 95-104.
[17] Movagharnejad .K., Nikzad,M. (2007).Modeling of tomato drying using artificial neural network. Comput. Electron: 78-85.
[18] Hakimzadeh, V., Mousavi, S.M. Elahi,M. and Razavi, S.M.A. 2017. Purification of Raw Cane Sugar by Micellar-Enhanced Ultrafiltration Process Using Linear Alkylbenzene Sulphonate (LAS). Journal of Food Processing and Preservation. Volume 41, Issue3.