بررسی امکان کاربرد فیلم کازئینات سدیم حاوی نانورس و اسانس خوشاریزه در بسته بندی ماست قالبی پروبیوتیک

نویسندگان
دانشگاه فنی و حرفه ای
چکیده
در این تحقیق به منظور امکان سنجی استفاده از بسته‏بندی های زیست تخریب پذیر و همچنین بررسی تاثیر آن در زنده مانی باکتری های پروبیوتیک جهت پوشش ظروف حاوی ماست از فیلم کازئینات سدیم حاوی نانورس و اسانس خوشاریزه استفاده شد و نمونه ها در دمای 4 و 15 درجه سانتیگراد و به مدت 21 روز نگهداری شدند. اثر جنس بسته بندی بر زنده مانی باکتری لاکتوباسیلوس اسیدوفیلوس معنی‌دار نبود ، در حالی‌که بر رشد باکتری بیفیدیوباکتریوم انیمالیس معنی دار بود، بیشترین تعداد باکتری انیمالیس در پوشش حاوی 5/1 گرم نانورس و کمترین تعداد در ظروف حاوی 75/0 گرم نانورس مشاهده گردید. با افزایش دمای نگهداری و گذشت زمان به طور همزمان روند کاهش تعداد باکتری‌ها­ی زنده تسریع گردید و در مورد زمان نگهداری بیشترین کاهش در هفته آخر نگهداری بدست آمد، به‌طوری‌که میزان کاهش باکتری لاکتوباسیلوس اسیدوفیلوس در دمای C°15 پس از سه هفته نگهداری 79/0 سیکل لگاریتمی بود در حالی‌که در همین شرایط تعداد باکتری بیفیدو باکتریوم انیمالیس 3/1 سیکل کاهش نشان داد که حاکی از مقاومت بیشتر لاکتوباسیلوس اسیدوفیلوس نسبت به انیمالیس به شرایط اسیدی ماست در طول دوره نگهداری می‌باشد. در دمای C°4 تفاوتی در میانگین pH و اسیدیته بین نمونه های مختلف بسته بندی مشاهده نشد ولی در دمای C° 15 بین تمامی نمونه های بسته بندی، تفاوت معنی داری وجود داشت. به‌طوری‌که بیشترین کاهش در میزان pHو بیشترین افزایش اسیدیته مربوط به بسته‌بندی پوشش حاوی 5/1گرم نانورس در انتهای دوره نگهداری بود
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Feasibility of Film Based Sodium Caseinate-Nanoclay and Echinophora Platyloba Essential Oil useing in packaging of probiotic yogurt

نویسندگان English

roghieh ashrafi yourghanloo
haleh hemmati
technical & vocational university
چکیده English

In this study the caseinat sodium film containing nanoclay and Echinophora Platyloba essential oil was used in order to possibility of using biodegradable packaging as well as its effect on the viability of probiotic bacteria to cover the contents of yogurt. The samples were stored at 4 and 15 ° C for 21 days. The effect of packing material on the survival of Lactobacillus acidophilus was not significant, while on the growth of Bifidobacterium was significant. The highest number of bacteria was observed in the coating containing 1.5 grams of nanoclay and the lowest number of containers containing 0.75 grams of nanoclay. By increasing storage temperature and time, simultaneously, the process of decreasing the number of live bacteria was accelerated .the reduction of Lactobacillus acidophilus bacteria at 15 ° C after three weeks of storage / 0 was a logarithmic cycle, while in the same situation, the number of Bifidobacterium analisis bacteria decreased by 1.3 times, indicating a higher resistance of Lactobacillus acidophilus to acidic conditions of yogurt during the storage time. At 4 ° C, there was no difference in mean pH and acidity between different packaging samples, but there was a significant difference between all packaging samples at 15 ° C. The highest decrease in pH and maximum acidity was due to the packing of 1.5 g of nanoclay in the end of the storage time

کلیدواژه‌ها English

Echinophora platyloba essenstial oil
Probiotic
sodium casheinate
Nanoclay
set yogurt
1. Modler, H. W., McKellar, R. C., Yaguchi, M. 1990. Bifidobacteria and bifidogenic factors, Canadian Institute of Food Science and Technology Journal, 23, 29–41.
2. Cueva, O., & Aryana, K. J. 2008. Quality attributes of a heart healthy yogurt. LWT, 41, 537-544.
3. Institute of Standards and Industrial Research of Iran. 2008 - yogurt - properties and Methods of Test, No. Food Science and Technology, 19, 203-210.
4. Kraskoop W, Bhandari B and Deeth HC, 2004. Survival of probiotic encapsulated in chitosan-coated alginate beads in yogurt from UHT – and conventionally treated milk during storage. Food Science and Technology 39: 177-183.
5. Sanz, Y. 2007. Ecological and functional implications of the acid-adaptation ability of Bifidobacterium, A way of selecting improved probiotic strains, International Dairy Journal, 17, 1284-1289.
6. Rasic, J. L., & Kurmann, J. A. 1983. Bifidobacteria and their role, Basel Birkhauser, 12,13, 21, 42–50, 102–133, 144–158.
7. Huisin’t Veld, J. H. J., & a Havenaar, R. 1991. are probiotics and other functional foods the medicines .Journal of Chemical Technology and Biotechnology, 51, 562–567.
8. Shahidi, F. & Mendosa, A. F. 2008. A perception to survival of Bifidobacterium spp. in bioyoghurt, simulated gastric juice & bile solution. World Applied Sciences Journal, 3, (1), 40-44.
9. Rasdhari, M., Parekh, T., Dave, N., Patel, V. & Subhash, R. 2008. Evaluation of various physic-chemical Properties of Hibiscus safdariffa & L. casei incorporated probiotic yogurt. Pakistan Journal of Biological Sciences, 11, 2101-2108.
10. Khan, S. H. & Ansari, F. A. 2007. Probiotics – the friendly bacteria with market potential in global market. Pakistan Journal of Pharmaceutical Scinces, 20, 71-76.
11. Heenan, C. M., Adams, M. C., Hosken, R. W. & Fleet, G. H. 2004. Survival & sensory acceptability of probiotic microorganisms in a nonfermented frozen vegetarian dessert. Lebensmittel Wissenschaft & Technology, 37, 461-466.
12. Khurana, H.K.& Kanawjia, S.K. 2007. Recent trends in development of fermented milks. Current Nutrition & Food Science, 3, 91-108.
13. Jayamanne VS, Adams MR. 2004. Survival of probiotic bifidobacteria in buffalo curd and their effect on sensory properties. International journal of food science & technology. 39,719-25.
14. Dave RI, Shah NP. 1997. Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. International Dairy Journal, 7,31-41.
15. Nawdon, P., and Phisut, N. 2016. Influence of packaging material and storage time on physical , che mical and microbiological properties of set yogurt comparative study between modified biodegradable poly lactic acid and polypropylene. Journal of Engineering Science and Technology , 10, 1437 – 1449.
16. Senaka, C. R., Evans, C. A., Adams, M. C., & Baines, S. K. 2013. Production of probiotic ice cream from goat’s milk and effect of packaging materials on product quality, Small Ruminant Research, 112, 174– 180.
17. Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., Miraki, R. 2013. Plasticizers for zein: their effect on tensile properties and water absorption of zein films. Cwreal chemistry, 81,1-5.
18. Rhim, j. W.,Lee, S. B., and Hong, S. I. 2011. Preparation and characterization of agar/clay nanocomposite Films: the effect af clay type. Journal af food science 76, N40-N48.
19. Casariego, A., Souza, B., cerqueira, M., Teixeira,j., Cruz, L., Diaz., R., and Vicente, 2009. Chitosan/clay Films properties as affected by biopolymer and clay micro/nanoparticles concentrations.Food Hydrocolloids, 23, 1895-1902.
20. Dashipour, A., Razavilar, V., Hosseini, H., Shojaee-Aliabadi, S., German, J. B., Ghanati, K. and Khaksar, R. 2015. Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil, International Journal of Biological Macromolecules, 72, 606-613.
21. AOAC. 2002. Official methods of analysis of the AOAC, 15th,ed. (Ed.S.Williams). Arlington, USA: Association of Official Analytical Chemists.
22. Kailasapathy K, 2006. Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. Food Science and Technology, 39, 1221-1227.
23. .Kowalczyk, D., Baraniak, B. 2011. Effect of plasticizers, pH and heating of film-forming solution on the properties of pea protein isolate films. Journal of applied polym scence 99, 170-176.
24. Pereda, M., Amica, G., Racez, I., Marcovich, N.E. 2011. Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J. Food Eng., 103, 76-83.
25. Atef, M., Rezaei, M., and Behrooz, R. 2015. Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil, Food Hydrocolloids, 45:150-157.
26. Rhim, J. W .. and Kirn. Y. T. 2014. Chapter 17 – Biopolymer-Based Composite Packaging Materials with Nanoparticles. In “lnnovalions in Food Packaging (Second Edition)” (.I. H. Han, ed.). Academic Press. San Diego.. 413-442.
27. Taheri, P., Ehsani, M. R., Khosravi Darani, K. 2009. Effect of Lactobacillus acidophilus La-5 probiotic bacteria on microbiological characteristics, sensory properties and stability of probiotic dough during storage. Iranian Journal of Food Science and Technology, 3, 15-24.
28. Mortazavian, A. M., Ehsani, M. R., Mousavi, S. M., Reinheimer, J. A., Emamdjomeh, Z., Sohrabvandi, S., & Rezaei, K. 2006. Preliminary investigation of the combined effect of heat treatment and incubation temperature on the viability of the probiotic micro‐organisms in freshly made yogurt. International Journal of Dairy Technology, 59, 8-11.
29. Donkor, O. N., Henriksson, A., Vasiljevic, T., & Shah, N. P. 2006. Effect of acidification on the activity of probiotics in yoghurt during cold storage, International Dairy Journal, 16, 1181–1189.
30. Cruz, A. G., Castro,W. F., Faria, J. A. F., Bolini, H. M. A., Celeghini, R. M. S., Raices, R. S. L., Oliveira, C. A. F., Freitas, M. Q., ConteJúnior, C. A., & Mársico, E. T. 2013. Stability of probiotic yogurt added with glucose oxidase in plastic materials with different permeability oxygen rates during the refrigerated storage, Food Research International, 51, 723–728.
31. Korbekandi H, Mortazavian A, Iravani S. 2011. Technology and stability of probiotic in fermented milks. Probiotic and Prebiotic Foods :Technology, Stability and Benefits to the Human Health New York: Nova Science Publishers Ltd,13,160-169.
32. Donkor ON, Nilmini SLI, Stolic P, Vasiljevic T and Shah NP, 2007. Survival and activity of selected probiotic organisms in set-type yogurt during cold storage. International Dairy Journal ,17,657–665.
33. Tamime, A. Y., & Robinson, R. K. 1999. Yoghurt, science and technology. Cambridge, Woodhead Publishers Ltd.
34. Hsiao HC, Lian WC, Chou CC. 2004. Effect of packaging conditions and temperature on viability of microencapsulated bifidobacteria during storage. Journal of the Science of Food and Agriculture, 84,134-9.
35. Da Cruz AG, de AF Faria J, Van Dender AG. 2007. Packaging system and probiotic dairy foods. Food Research International, 40,951-6.
36. Rybka, S., Fleet, G. 1997. Populations of L. delbrueckii ssp bulgaricus, S. thermophilus, L. acidophilus and Bifidobacteriumspecies, Australian yoghurts, Food Austr, 49, 471–475.
37. Kumar, P., & Mishra, H. N. 2004. Storage stability of mango soy fortified yoghurt powder in two different packaging materials: HDPP and ALP, Journal of Food Engineering, 65, 569–576.
1. Modler, H. W., McKellar, R. C., Yaguchi, M. 1990. Bifidobacteria and bifidogenic factors, Canadian Institute of Food Science and Technology Journal, 23, 29–41.
2. Cueva, O., & Aryana, K. J. 2008. Quality attributes of a heart healthy yogurt, LWT, 41, 537-544.
3. Institute of Standards and Industrial Research of Iran. 2008 - yogurt - properties and Methods of Test, No. 695.
4. Kraskoop W, Bhandari B and Deeth HC, 2004. Survival of probiotic encapsulated in chitosan-coated alginate beads in yogurt from UHT – and conventionally treated milk during storage. Food Science and Technology 39: 177-183.
5. Sanz, Y. 2007. Ecological and functional implications of the acid-adaptation ability of Bifidobacterium, A way of selecting improved probiotic strains, International Dairy Journal, 17(11), 1284-1289.
6. Rasic, J. L., & Kurmann, J. A. 1983. Bifidobacteria and their role, Basel Birkhauser, 12,13, 21, 42–50, 102–133, 144–158).
7. Huisin’t Veld, J. H. J., & a Havenaar, R. (1991). Journal of Chemical Technology and Biotechnology, 51, 562–567.
8. Shahidi, F. & Mendosa, A. F. 2008. A perception to survival of Bifidobacterium spp. in bioyoghurt, simulated gastric juice & bile solution. World Applied Sciences Journal, 3, (1), 40-44.
9. Rasdhari, M., Parekh, T., Dave, N., Patel, V. & Subhash, R. 2008. Evaluation of various physic-chemical Properties of Hibiscus safdariffa & L. casei incorporated probiotic yogurt. Pakistan Journal of Biological Sciences, 11, (17), 2101-2108.
10. Khan, S. H. & Ansari, F. A. 2007. Probiotics – the friendly bacteria with market potential in global market. Pakistan Journal of Pharmaceutical Scinces, 20, (1), 71-76.
11. Heenan, C. M., Adams, M. C., Hosken, R. W. & Fleet, G. H. 2004. Survival & sensory acceptability of probiotic microorganisms in a nonfermented frozen vegetarian dessert. Lebensmittel Wissenschaft & Technology, 37, 461-466.
12. Khurana, H.K.& Kanawjia, S.K. 2007. Recent trends in development of fermented milks. Current Nutrition & Food Science, 3, 91-108.
13. Homayouni, A., Azizi, A., Ehsani, M.R., Yarmand, M.S. and Razavi, S.H. 2008. Effect of microencapsulation and resistant starch on the probiotic survival and sensory properties of synbiotic ice cream. Food Chemistry, 111: 50–55.
14. Heller, J. K. 2001. Probiotic bacteria in fermented foods: Product characteristics and starter organisms, American Journal of Clinical Nutrition, 73 (Suppl), 374–379.
15. Guarner, F. 2007. A prebiotic in inflammatory bowel diseases, British Journal of Nutrition, 98(1), 85–89.
16. Shah, N. P. 2007. Functional cultures and health benefits, Int. Dairy J, 17, 1262–1277.
17. Da Cruz AG, de AF Faria J, Van Dender AG. 2007. Packaging system and probiotic dairy foods. Food Research International, 40(8):951-6.
18. Jayamanne VS, Adams MR. 2004. Survival of probiotic bifidobacteria in buffalo curd and their effect on sensory properties. International journal of food science & technology. 39(7):719-25.
19. Dave RI, Shah NP. 1997. Viability of yoghurt and probiotic bacteria in yoghurts made from commercial starter cultures. International Dairy Journal, 7(1):31-41.
20. Senaka, C. R., Evans, C. A., Adams, M. C., & Baines, S. K. 2013. Production of probiotic ice cream from goat’s milk and effect of packaging materials on product quality, Small Ruminant Research, 112, 174– 180.
21. AOAC. 2002. Official methods of analysis of the AOAC, 15th,ed. (Ed.S.Williams). Arlington, USA: Association of Official Analytical Chemists.
22. Kailasapathy K, 2006. Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. Food Science and Technology 39: 1221-1227.
23. Donkor ON, Nilmini SLI, Stolic P, Vasiljevic T and Shah NP, 2007. Survival and activity of selected probiotic organisms in set-type yogurt during cold storage. International Dairy Journal 17:657–665.
24. Tamime, A. Y., & Robinson, R. K. 1999. Yoghurt, science and technology. Cambridge, Woodhead Publishers Ltd.
25. Korbekandi H, Mortazavian A, Iravani S. 2011. Technology and stability of probiotic in fermented milks. Probiotic and Prebiotic Foods :Technology, Stability and Benefits to the Human Health New York: Nova Science Publishers Ltd,131-69.
26. Kumar, P., & Mishra, H. N. 2004. Storage stability of mango soy fortified yoghurt powder in two different packaging materials: HDPP and ALP, Journal of Food Engineering, 65, 569–576.
27. Hsiao HC, Lian WC, Chou CC. 2004. Effect of packaging conditions and temperature on viability of microencapsulated bifidobacteria during storage. Journal of the Science of Food and Agriculture, 84(2):134-9.
28. Aghajani, A., Pourahmad, R., and Mahdavi Adeli, H. 2010. Effect of prebiotic compounds on probiotic yoghurt containing Lactobacillus caseie. Journal of Food Science and Nutrition, Vol. 8, No. 4.
29. Mortazavian, A. M., Ehsani, M. R., Mousavi, S. M., Reinheimer, J. A., Emamdjomeh, Z., Sohrabvandi, S., & Rezaei, K. 2006. Preliminary investigation of the combined effect of heat treatment and incubation temperature on the viability of the probiotic micro‐organisms in freshly made yogurt. International Journal of Dairy Technology, 59(1), 8-11.
30. Hood, S. K., a Zottola, E. A. 1988. Effect of low pH on the ability of Lactobacillus acidophilus to survive and adhere to human intestinal cells, Journal of Food Science, 53(5), 1514–1516.
31. Donkor, O. N., Henriksson, A., Vasiljevic, T., & Shah, N. P. 2006. Effect of acidification on the activity of probiotics in yoghurt during cold storage, International Dairy Journal, 16, 1181–1189.
32. Shihata, A., & Shah, N.P. 2002. Influence of addition of proteolytic strains of Lactobacillus delbrueckii subsp.bulgaricus to commercial ABT starter cultures on texture of yoghurt, exopolysaccharide production and survival of bacteria, International Dairy Journal, 12, 765-772.
33. Talwalkar A, Kailasapathy K. 2004. The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Current issues in intestinal microbiology, 5(1):1-8.
34. Cruz, A. G., Castro,W. F., Faria, J. A. F., Bolini, H. M. A., Celeghini, R. M. S., Raices, R. S. L., Oliveira, C. A. F., Freitas, M. Q., ConteJúnior, C. A., & Mársico, E. T. 2013. Stability of probiotic yogurt added with glucose oxidase in plastic materials with different permeability oxygen rates during the refrigerated storage, Food Research International, 51, 723–728.
35. Taheri, P., Ehsani, M. R., Khosravi Darani, K. 2009. Effect of Lactobacillus acidophilus La-5 probiotic bacteria on microbiological characteristics, sensory properties and stability of probiotic dough during storage. Iranian Journal of Food Science and Technology, 3 (4), 15-24.
36. Rybka, S., Fleet, G. 1997. Populations of L. delbrueckii ssp bulgaricus, S. thermophilus, L. acidophilus and Bifidobacteriumspecies, Australian yoghurts, Food Austr, 49, 471–475.
37. Rodríguez, H., de las Rivas, B., Muñoz, R., 2007. Efficacy of recA sequence analysis in the identification and discrimination of Lactobacillus hilgardii strains isolated from stuck wine fermentations. International Journal of Food Microbiology 115, 70–78.
38. Rhim, j. W.,Lee, S. B., and Hong, S. I. (2011). Preparation and characterization of agar/clay nanocomposite Films: the effect af clay type. Journal af food science 76, N40-N48.
39. Casariego, A., Souza, B., cerqueira, M., Teixeira,j., Cruz, L., Diaz., R., and Vicente, (2009). Chitosan/clay Films properties as affected by biopolymer and clay micro/nanoparticles concentrations.Food Hydrocolloids 23, 1895-1902.
40. .Kowalczyk, D., Baraniak, B. (2011). Effect of plasticizers, pH and heating of film-forming solution on the properties of pea protein isolate films. Journal of applied polym scence 99, 170-176.
41. Pereda, M., Amica, G., Racez, I., Marcovich, N.E. (2011). Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J. Food Eng., 103, 76-83.
42. .Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M., Miraki, R. (2013). Plasticizers for zein: their effect on tensile properties and water absorption of zein films. Cwreal chemistry 81,1-5.
43. Dashipour, A., Razavilar, V., Hosseini, H., Shojaee-Aliabadi, S., German, J. B., Ghanati, K. and Khaksar, R. )2015(. Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil, International Journal of Biological Macromolecules, 72: 606-613.
44. Atef, M., Rezaei, M., and Behrooz, R. )2015(. Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil, Food Hydrocolloids, 45:150-157.
45. Rhim, J. W .. and Kirn. Y. T. (2014). Chapter 17 – Biopolymer-Based Composite Packaging Materials with Nanoparticles. In “lnnovalions in Food Packaging (Second Edition)” (.I. H. Han, ed.). pp. 413-442. Academic Press. San Diego.
46.