بهینه‌سازی خصوصیات رئولوژیکی ماست چکیده تولید شده به روش فرآیند بدون آب‌گیری با استفاده از الگوریتم کرم شب‌تاب

نویسندگان
1 دانش آموخته کارشناسی ارشد، تولید فرآورده‌های نوین لبنی، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران.
2 مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی خراسان رضوی، سازمان تحقیقات، آموزش و ترویج کشاورزی، مشهد، ایران.
3 مهندسی علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.
چکیده
روش­های تولید ماست چکیده از روش­های سنتی و پر زحمت مانند جدا کردن قسمتی از فاز سرمی در کیسه­های پارچه­ای تا روش­های پیچیده­تر، استفاده از روش­های مناسب­تر تولید مانند روش فرآیند بدون آب­گیری (wheyless) توسط پودرهای پروتئینی حاصل از شیر را ضروری می­سازد. لذا در این پژوهش اثر اجزاء مختلف فرمولاسیون ماست چکیده از جمله کنسانتره پروتئین شیر (mpc)، پودر آب پنیر (cwp) و صمغ کنجاک بر ویژگی­های رئولوژیکی ماست چکیده با استفاده از طرح متقاطع مخلوط–فرآیند مورد بررسی قرار گرفت و سپس این خصوصیات با استفاده از مدل­ای به دست آمده با استفاده از الگوریتم کرم شب تاب بهینه گردید. نتایج حاصل از آزمون اصلاح شده اکسترژن برگشتی-آنالیز پروفیل بافت نشان داد که با افزایش میزان صمغ کنجاک سختی، چسبندگی و نیروی چسبندگی نمونه­ها به طور معنی­داری به ویژه برای نمونه­های حاوی cwp بالاتر افزایش یافت در حالی­که در مقادیر بالای صمغ کنجاک با افزایش میزان mpc و کاهش میزان cwp پیوستگی کاهش نشان داد. همچنین نتایج حاصل از آزمون کرنش متغیر نشان داد که با افزایش میزان صمغ کنجاک G' LVE ، G" LVE، γc ، τy ، τf و Gf نمونه­ها نیز به طور معنی­دار به ویژه برای نمونه­های حاوی cwp بالاتر افزایش پیدا کرد. نتایج بهینه درصد ترکیبات مختلف برای دستیابی به حداکثر سختی، پیوستگی، G' LVE ، G" LVE، γc ، τy ، τf ، Gf و حداقل چسبندگی، نیروی چسبندگی و G" LVE استفاده از الگوریتم کرم شب­تاب در فضای مؤلفه­های اصلی نشان داد که مقادیر بهینه به دست آمده از mpc و صمغ کنجاک واریانس بیشتری از داده‌های مربوط به پارامترهای رئولوژیکی را به خود اختصاص داده­اند که نشان دهنده اهمیت و نقش مؤثر تقریباً یکسان صمغ کنجاک و mpc بر بهبود خواص رئولوژیکی ماست چکیده بود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of rheological properties of labane (concentrated yoghurt) produced by wheyless process using firefly algorithm

نویسندگان English

Mostafa Kashaninejad 1
Masoud Najaf Najafi 2
Mohsen Ghods rohani 2
Morteza Kashaninejad 3
1 MSc of Novel Dairy Products Manufacture, Khorasan Razavi Agricultural and Natural Resources Research and education Center, AREEO, Mashhad, Iran.
2 Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran.
3 Department of Food Science and Technology, Ferdowsi University of Mashhad (FUM), Mashhad, Iran.
چکیده English

Production methods of concentrated yoghurt (labane) varied from traditional methods, which are tedious, such as separation of whey by fabric bags, to complicated methods. These raise demand to establish more suitable methods such as “wheyless process” by dried milk, concentrated milk protein or concentrated whey protein. So the influence of different ingredients such as milk protein concentrate (MPC), whey protein concentrates (WPC) and konjac gum (KG) on rheological properties of labane was investigated through mixture-process design methodology and optimized these properties by firefly algorithm. The results of the combination of back extrusion and texture profile analysis (TPA) indicated that increasing KG significantly increased hardness, adhesiveness and adhesiveness force especially for samples with high amount of CWP but increasing MPC and decreasing CWP decreased cohesiveness in samples with high amount of KG. Strain sweep test of the labane indicated that all sample had gel-like structure (weak gel) at 1 Hz and 20˚C. Rheological results also showed that increasing KG significantly increased G’LVE, G” LVE, γc, τy, τf and Gf especially for samples with high amount of CWP. The optimal results of different gum percentages to achieve maximum Hardness, Cohesiveness, G΄LVE, γc, τy, tan δ LVE, Gf and minimum Adhesiveness, Adhesiveness force, G˝LVE using the firefly algorithm in PC space, it has been shown that the optimum amounts of KG and MPC were close to each other and had more variance of the data which shows the similarity of the effect of these two component on the rheological parameters.

کلیدواژه‌ها English

Concentrated yoghurt
Modified texture profile analysis and back extrusion
Firefly algorithm
Cheese whey powder
Konjac gum
Strain sweep test
[1] Nsabimana, C., Jiang, B., & Kossah, R. 2005. Manufacturing, properties and shelf life of labneh: a review. International Journal of Dairy Technology, 58, 222-231.
[2] Jumah, R. Y., Abu-Jdayil, B., & Shaker R. R. 2001. Effect of type and level of starter culture on the rheological properties of set yogurt during gelation process. International journal of food properties, 4 (3), 531–544.
[3] Soukoulis, C., Panagiotidis, P., Koureli, R., & Tzia, C. 2007. Industrial yogurt manufacture: monitoring of fermentation process and improvement of final product quality. Journal of Dairy Science, 90(6), 2641–2654.
[4] Fox, P.F. 2003. The major constituents of milk. In: Dairy Processing, Improving Quality (ed. G Smit), pp. 5–41, CRC Press LLC, Boca Raton, FL.
[5] Lucey, J. A. 2009. Milk protein gels. In: Milk proteins: from expression to food. Boland, M., Singh, H., & Thompson, A. Elsevier.
[6] van Vliet, T., Lakemond, C. M., & Visschers, R. W. 2004. Rheology and structure of milk protein gels. Current Opinion in Colloid & Interface Science, 9(5), 298-304.
[7] Lucey, J. A., Munro, P. A., & Singh, H. 1998. Rheological properties and microstructure of acid milk gels as affected by fat content and heat treatment. Journal of Food Science, 63(4), 660–664.
[8] Lucey, J. A., & Singh, H. 1997. Formation and physical properties of acid milk gels: a review. Food Research International, 30(7), 529–542.
[9] Krzeminski, A., Großhable, K., & Hinrichs, J. 2011. Structural properties of stirred yoghurt as influenced by whey proteins. LWT-Food Science and Technology, 44(10), 2134–2140.
[10] Chua, M., Chan, K., Hocking, T.J., Williams, P.A., Perry, C.J., & Baldwin, T.C. 2012. Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch. Carbohydrate Polymers, 87(3), 2202–2210.
[11] Yang, X-S., Nature-Inspired Metaheuristic Algorithm, Luniver Press, 2008.
[12] Yeomans, J. S. (2015). A parametric testing of the firefly algorithm in the determination of the optimal osmotic drying parameters of mushrooms. JAISCR, 4, 4, 257–266.
[13] Tamime, A. Y., & Robinson, R. K. 1999. Yoghurt: science and technology. Woodhead Publishing.
[14] Ozer, B.H., & Robinson, R.K. 1999.The Behaviour of Starter Culture in concentrated yoghurt (Labneh) produced by different techniqes. LWT - Food Science and Technology , 32, 391–395.
[15] Ozer, B.H., Bell, A.E., Grandison, A.S., & Robinson, R.K. 1998. Rheological properties of concentrated yoghurt (labneh), Journal of Texture Studies, 29, 67–79.
[16] Salji, J. 1991 .concentrated yoghurt: a challenge to our food industry.food science and technology today, 5(1), 18–19.
[17] Sodini, I., Montella, J., & Tong, P. S. 2005. Physical properties of yogurt fortified with various commercial whey protein concentrates. Journal of the Science of Food and Agriculture, 85(5), 853–859.
[18] Yazici,F., Akgun, a. 2004. Effect of some protein based fat relacers on physical, chemical, textural and sensory properties of strained yoghurt. Journal of food engineering, 62: 245-254.
[19] Bourne, M. C. 1978. Texture profile analysis. Food Technology, 32, 62–66, 72.
[20] Balaghi, S., Mohammadifar, M. A., Zargaraan, A., Ahmadi Gavlighi, H., & Mohammadi, M. 2011. Compositional analysis and rheological characterization of gum tragacanth exudates from six species of Iranian Astragalus. Food Hydrocolloids, 25, 1775–1784.
[21] Dal Belloa, L.H.A., & Vieirab, A.F.C. 2011. Optimization of a product performance using mixture experiments including process variables, Journal of Applied Statistics, 38(8), 1701–1715.
[22] Yang, X-S., “Firefly Algorithms for Multimodal Optimization, in: Stochastic Algorithms”, Foundations and Applications, SAGA, Lecture Notes in Computer Sciences, Cambridge, UK, 5792, 2009, pp. 169-178.
[23] Yang, X-S., “Firefly Algorithm, Stochastic Test Functions and Design Optimization”, International Journal of Bio-inspired Computation, Vol. 2, No. 2, 2010, pp. 78-84.
[24] Walstra, P. 2013. Dairy technology: principles of milk properties and processes. CRC Press.
[25] Kuecuekcetin, A. (2008). Effect of heat treatment of skim milk and final fermentation pH on graininess and roughness of stirred yogurt. International Journal of Dairy Technology, 61(4), 385–390.
[26] Aziznia, S., Khosrowshahi, A., Madadlou, A., & Rahimi, J. 2008. Whey Protein Concentrate and Gum Tragacanth as Fat Replacers in Nonfat Yogurt: Chemical, Physical, and Microstructural Properties. Journal of Dairy Science, 91, 2545–2552.
[27] Park, Y. W. 2007. Rheological characteristics of goat and sheep milk. Small Ruminant Research, 68(8), 73–78.
[28] Gauche, C., Tomazi, T., Barreto, P. L. M., Ogliari, P. J., & Bordignon-Luiz, M. T. 2009. Physical properties of yoghurt manufactured with milk whey and transglutaminase. LWT-Food Science and Technology, 42(1), 239–243.
[29] Pai, V.B., & Khan, S.A. 2002. Gelation and Rheology of xanthan/ enzyme-modified guar blends. Carbohydrate polymers, 49, 207–216.
[30] Clark, A.H., & Ross-Murphy, S.B. 1987. Structural and mechanical properties of biopolymer gels. Advance Polymer Science, 83, 57– 192.
[31] Heldman, D.R., & Lund, D.B. 2007. Handbook of Food Engineering, 2nd edn. Pp. 12–15, 25–30, 36–40, New York, NY, USA, CRC Press.
[32] Paulsson, M., & Dejmek, P. 1990. Rheological Properties of Heat-Induced -lactoglobulin gels. Journal of Dairy Science, 73, 45– 53.
[33] Steffe, J.F. (1996). Rheological methods in food process engineering (pp. 17-23). East Lansing, MI. Freeman Press.
[34] Kuecuekcetin, A. (2008). Effect of heat treatment of skim milk and final fermentation pH on graininess and roughness of stirred yogurt. International Journal of Dairy Technology, 61(4), 385–390.
[35] Mandala, I., Kapetanakou, A., & Kostaropoulos, A. 2008. Physical properties of breads containing hydrocolloids stored at low temperature. II. Effect of freezing. Food Hydrocolloids, 22, 1443– 1451.
[36] Naji-Tabasi, S., & Razavi, S. M. A. 2017. New studies on basil (Ocimum bacilicum L.) seed gum: Part III – Steady and dynamic shear rheology. Food Hydrocolloids, 67, 243–250.
[37] Tamime, A. Y., & R. K. Robinson. 1985. Yoghurt: Science and Technology. Pergamon Press, London, United Kingdom. 23 Walstra, P., T. van Vliet, and C.G.B. Bremer. (1990). Page 369-382 in Food Polymers, Gels and Colloids. E. Dickinson, ed. Royal Soc. Chem., Norwich, United Kingdom.