بررسی میزان باقی مانده آفت کش های مالاتیون و دیازینون در زیتون تخمیری طی فرآیند تولید و فرآوری

نویسندگان
1 عضو هیات علمی گروه علوم و مهندسی صنایع غذایی، دانشکده صنایع غذایی، دانشگاه بوعلی سینا، همدان
2 دانشکده علوم و مهندسی صنایع غذایی، دانشگاه بوعلی سینا، همدان
3 دانش آموخته علوم و مهندسی صنایع غذایی، دانشگاه آزاد اسلامی واحد سنندج
چکیده
استفاده از ترکیبات شیمیایی، روشی بسیار ساده و موثر برای حفاظت از محصولات کشاورزی در برابر آفات است. افزایش مصرف بی‌رویه این آفت‌کش‌ها، باعث نگرانی است، زیرا باقی‌ماندن این آفت‌کش‌ها در میوه‌ها وسبزی‌ها باعث ایجاد عوارض بسیار خطرناکی در انسان می شود. زیتون یکی از میوه های بسیار مفید و پر مصرف در جامعه ایرانی است که می‌تواند به‌ صورت تخمیری مصرف گردد؛ لذا در این پژوهش توانایی تخمیر در کاهش میزان باقی‌مانده دو سم مالاتیون و دیازینون و همچنین میزان اسیدیته، pHو نمک در طی فرآیند آماده سازی و تخمیر بررسی گردید. نتایج آماری نشان داد که عملیات‌های شست‌وشو و تلخی زدایی، سم مالاتیون و دیازینون را به ترتیب به میزان 59/73% و 38/93% کاهش داد. این در حالی است که میزان کاهش آنها در طی 20 روز تخمیر برابر با 48/63% و 57/69% بود و پس از فرآیند تخمیر و در انتهای تولید این کاهش تقریباً برابر با 5/90% و 98/97% بوده است. میزان باقی‌مانده آفت‌کش مالاتیون در روزهای 1، 10 و 20 تخمیر تفاوت معنی‌داری با یکدیگر داشتند (P<0.05) درحالیکه میانگین این میزان برای دیازینون معنی‌دار نبود. بطورکلی نتایج آماری نشان داد که فرآیند تخمیر اثر معنی‌داری بر میزان مالاتیون دارشته (P<0.05) ولی بر دیازینون تأثیری نداشت. همچنین تخمیر اثر معنی‌داری بر میزان درصد نمک، اسیدیته و pHداشت (P<0.05). در آخر فرآیند تخمیر، هیچ کپکی مشاهده نگردید ولی مخمرها رشد اندکی نشان دادند (CFU/g1450) ولی بسیار پایین‌تر از تعدادی بودند که بتوانند بر کیفیت محصو ل اثر بگذارند. به‌طورکلی فرآیند تخمیر به‌طور موثری باعث کاهش میزان باقی‌مانده آفت‌کش‌ها می شود ولی عملیات یا تیمارهای انجام گرفته در تولید زیتون تخمیری بیش‌تر از خود فرآیند تخمیر در کاهش میزان باقی‌مانده سموم نقش دارند. البته به نظر می رسد که توانایی تخمیر در کاهش آنها بستگی به نوع سم، مدت زمان تخمیر و سایر شرایط محیطی نیز دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The evaluation of Malathion and Diazinon residues in pickled olive during preparation and production.

نویسندگان English

Mostafa Karami 1
Rezvan Esmaili 2
Samaneh Pashaii 3
1 Faculty member, Department of food science and technology, Faculty of food science, Bu-Ali Sina university, hamedan
2 Faculty of Food Science and Technology, Bu-Ali Sina university of Hamedan, Hamedan
3 M.Sc. of Food Science and Technology, Islamic Azad University, Sanandaj
چکیده English

The use of chemical compounds is a very simple and effective way to protect agricultural products, against pests. Increasing the unplanned use of these pesticides is a concern, because the pesticides residue in fruits and vegetables can lead to very dangerous side effects in humans. Olive is one of the most useful and consuming fruits in the Iranian community that can be used as pickled olive. Therefore, in this study, fermentation ability to reduce residues of two commonly used pesticides, Malathion and Diazinon studied, and their changes due to product acidity, pH and salt content during the preparation and fermentation processes were meassured. The results showed that washing and debittering operations reduced Malathion and Diazinon to 73.59 and 93.38%, respectively. However, after 20 days fermentation, their reduction was 63.68% and 69.57%, and after 40 days, at the end of production, this decrease was approximately 90.5% and 97.98%, respectively. The residue of Malathion pesticide was significantly different in fermentation days; 1, 10 and 20 (P<0.05), while the mean value for Diazinon was not significant. Overall, the results showed that the fermentation process had a significant effect on Malathion residue (P<0.05) but did not affect Diazinon residue. Also, fermentation had a significant effect on the percentage of salt, pH and acidity (P<0.05). At the end of the fermentation process, no mould growing was observed, but the yeast grow was showed (CFU/g 1450), much lower than the number that could affect the quality of the product. Generally, the fermentation process effectively reduced the amount of residual pesticides, and the operations carried out in the production of pickled olives are more effective to reduce the amount of pesticide residues than the fermentation process itself.

کلیدواژه‌ها English

Fermentation
Malathion
Olive
Food
Fruits
Pesticides
vegetables
[1] Iranian national standard organization. (2013). Iran good agricultural practices, (Iran GAP) - Olive. 16542.
[2] Fernandez, A. G., Fernandez Diez, M. J., and Adams, M. R. (1997). Table olives: Production and processing. Chapman & Hall, London, UK. pp: 495.
[3] Radha, T., and Mathew, L. (2007). Fruit crops. New India Publishing; pp. 256-257.
[4] Hakme, E., Lozano, A., Ferrer, C., Díaz-Galiano, F. J., Fern, A. R. ande Alba, Z. (2018). Analysis of pesticide residues in olive oil and other vegetable oils. Trends in Analytical Chemistry, 100, 167-179.
[5] Mirmansouri A. (1997). Olive. Agricultural education. Karaj Press; p. 108 [in Persian].
[6] Yada, S., Harris, L. J., York, G., and Vaughn, R. (2007). Olives: safe methods for home pickling. University of California.
[7] Tura, D., Gigliotti, C., Pedo, S., Failla, O., Bassi, D., and Serraiocco, A. (2007). Influence of cultivar and site of cultivation on levels of lipophilic and hydrophilic antioxidants in virgin olive oils (olea Europea L.) and correlations with oxidative stability. Sci Hort, 112, 108-119.
[8] Morowati, M., Azadvar, M. (2013). Determination of Diazonin residue levels and preharvest intervals in green house cucumbers in Jiroft. Genetic Engineering and Biosafety Journal, 2(1), 29-36. [In Persian].
[9] Hadian, Z., Azizi, M. H., and Ferdosi, R. (2006). Determination of chlorinated pesticide residues in vegetables by gas chromatography/ mass spectrometry. Food science and technology, 3(1), 67-74.
[10] Iranian national standard organization. (2016). Pesticides- maximum residueimit of pesticides- tropical and subtropical fruits. 13118.
[11] Baratian Ghorghi, Z., Sadeghi Mahoonak, A. R., Ghorbani, M., Shaeghi, M. (2014). Journal of food science and technology, 46 (12), 177-186.
[12] Kiritsakis. A., and Markatis, P. (1987). Olive Oil: A review. Advances in Food Research, 31, 453-482.
[13] Borcakli, M., Ozay, G., Alperden, L. (1993). Fermentation of Turkish olives with traditional and aerated systems, In: Food flavours, ingredients, and composition. Elsevier Science Publisher. B.V. Charalambous, 265-277.
[14] Esamili, T., Emam, Z, D., Ahadi, A, M., Shahanipoor, K., and Shafighi, M. (2012). Enumeration of Lactobacillus Plantarum extracted from olive with PCR-RFLP method. Microbiological biotechnology, 12 (4), 22-27.
[15] Kaushik, G., Satya, S., and Naik, S. N. (2008). Food processing a tool to pesticide residue dissipation- A review. Food Research International, 42(1), 26-40.
[16] Keikotlhaile, B. M., Spanoghe, P., and Steurbaut, W. (2009). Effects of food processing on pesticide residues in fruits and vegetables: A meta-analysis approach. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 48(1), 1-6.
[17] Martinez N., Gassan H., Casanova, M. S. (2009). Elimination of pesticide residues from virgin olive oil by ultraviolet light: Preliminary results. Journal of Hazardous Materials, 168, 555–559.
[18] Iranian national standard organization. (2006). Pesticides- determination of residues in agricultural and veterinary products- methods sampling. 1st edition, 8366.
[19] Iranian national standard organization. (1987). Analytical methods for determination of phosphorus and chlorine pesticides residues in food and agricultural crops. 1st edition, 2664.
[20] Iranian national standard organization. (2016). Table olive oil in brine- specifications and test methods. 5th revision, 987.
[21] Iranian national standard organization. (2006). Microbiology of food and animal feeding stuffs- preparation of test samples, initial suspension and decimal dilutions for microbiological examination, part 1: general rules for the preparation of initial suspension and decimal dilutions. 1st edition, 8923-1.
[22] Iranian national standard organization. (2007). Microbiology of food and animal feeding stuffs- horizontal method for the enumeration of yeasts and moulds- part 2: colony count technique in products with water activity less than or equal to 0.95. 1st edition, 10899-2.
[23] Dehghan Sekachaie, A., Ghorbani, M., Shokrzadeh, M., Maghsoudlou, Y., and Babaee, Z. (2011). The effect of conventional processes on residual content of Malathion in cucumber fruit. Electronic journal of food processing and preservation, 2 (2), 1-15.
[24] Hasan Zadeh, N., Bahramifar, N., and Esmaili Sari, A. (2008). Pesticides residues in food stuffs (Fruits and vegetables) as critical anti-health for consumers. 18th national congress of food science and technology, Mashhad, Iran.
[25] Imani, S., Talebi, K., Shojaei, M., Kamali, K. (2006). Multi-residue determination of eight types of pesticides used on greenhouse cucumber and Tomato. Proceedings of the 17th Plant Protection Congress, Tehran, Vol. 1, Pests, pp. 147 (In Farsi).
[26] Holland, P. T., Hamilton, D., Ohlin, B., and Skidmore, M. W. (1994). Effects of storage and processing on pesticide residues in plant products. IUPAC Reports on Pesticides (31). Pure and Applied Chemistry, 66 (2), 335-356.
[27] Soliman, K. M. (2001). Changes in concentration of pesticide residues in potatoes during washing and preparation. Food and Chemical Toxicology, 39, 887-891.
[28] Uysal, P. C., and Arsan, B. (2006). Fate of Endosulfan and Deltamethrin residues during tomato paste production. Journal of Central European Agriculture, 7 (2), 343-348.
[29] Dejonckhere, W., Steurbaut, W., Drieghe, S., Verstraeten, R., and Braeckman, H. (1996). Pesticide residue concentrations in the Belgian total diet 1991-1993. Journal of Association of Official Analytical Chemists of AOAC international, 79 (2), 520-528.
[30] Cabras, P., Angioni, A., Garau, V. L., Melis, M., Pirisi, F. M., Karim, M., and Minelli, E. V. (1997). Persistence of insecticide residues in olives and olive oil. Journal of Agricultural and Food Chemistry, 45, 2244-2247.
[31] Noohi, V., Keramat, J., and Shahedi, M. (2011). Reduction of Methalaxyl residue during pickled cucumber. 20th national congress of food science. Sharif university.
[32] Chin, H. B. (1997). The effect of processing on pesticide residues in processed fruits and vegetables. Book of Abstracts, 213th ACS National Meeting. San Francisco, 189p.
[33] Hasan Zadeh, N., Bahramifar, N., and Mokhtari, H. (2010). Ethion pesticide residue and it’s reduction by different methods in cucumber. Journal of plant protection, 24 (1), 29-34.
[34] Balinova, A. M., Mladenova, R. I. and Shtereva, D. D. (2006). Effects of processing on pesticide residues in peaches intended for baby food. Food Addit. Contam, 23, 895-901.
[35] Beena, K. (2008). Effects of household processing on reduction of pesticide residues in vegetables. J. Agr. Biol Sci, 3, 46-51.
[36] Brouwer, D. H., De Haan, M., Leenheers, L. H., De Vreede, S. A.F., Van Hemmen, J. J. (1997). Half-lives of pesticides on greenhouse crops. Bull. Environ. Contam. Toxicol. 58, 976-984.
[37] Salahi, A., Morowati, M., Entesari, M. (2013). Determination of Endosulfan and Diazinon residue levels in tomato and cucumber in Kohgiloye and Boyer Ahmad province. Genetic Engineering and Biosafety, 1(2), 113- 120. (In Farsi).
[38] Yadegarian, L. (2000). Diazinon residue levels and its pre-harvest interval in onion and Spring onion. Final project report, Iranian Research Institute of Plant Protection. (In Farsi).
[39] Prodhan, M. D. H., Akon, M. W., and Alam, S. N. (2018). Determination of pre-harvest interval for Quinalphos, Malathion, Diazinon and Cypermethrin in major vegetables. Journal of envoromental and analytical toxicology. 8(1), 553.
[40] Weinzierl, R. (2000). Insect pest management for commercial vegetable crops, Illinois agricultural pest management handbook, Department of crop sciences, Illinois.
[41] Torres, C. M., Pico, Y., Marin, R., and Manes, J. (1997). Evaluation of organophosphorus pesticide residues in citrus fruits from the Valencia Community (Spain). J. of AOAC International, 80, 1122-1128.
[42] Romeh, A. A., Mekky, T. M., Ramadan, R .A., Hendawi, M. Y. (2009). Dissipation of Profenophos, Imidacloprid and Propiconazole in tomato fruits and products. Bull Environment Contam Toxicology, 83(6), pp. 812-817.
[43] Abou Arab, A. A. K. )1999(. Behavior of pesticide in tomatoes during commercial and home preparation. Food Chemistry, 65, 509-514.
[44] Moreno-Gonzáleza, D., Alcántara-Durána, J., Silvina, M. A. (2018). Multi-residue pesticide analysis in virgin olive oil by nanoflow liquidchromatography high resolution mass spectrometry. Journal of Chromatography A, 1562, 27-35.
[45] Razzaghi, N., Ziarati, P., Rastegar, H., Shoeibi, S., Amirahmadi, M., Conti, G. O., Ferrante, M., Fakhri, Y., Mousavi Khaneghah, A. (2018). The concentration and probabilistic health risk assessment of pesticide residues in commercially available olive oils in Iran. Food and Chemical Toxicology, 120, 32-40.
[46] Rizzeti, M., Kemmerich, M., Martins, M. L., Prestes, O. D., Adaime, M. B., and Zanella, R. (2016). Optimization of a QuEChERS based method by means of central composite design for pesticide multiresidue determination in orange juice by UHPLC–MS/MS. Food chemistry, 196, 25-33.
[47] Calvo, H., Redondob, D., Remóna, S., María, E., Venturinia Ariasc, E. (2019). Efficacy of electrolyzed water, chlorine dioxide and photocatalysis for disinfection and removal of pesticide residues from stone fruit. Postharvest Biology and Technology, 148, 22-31.
[48] Salami, F., Rashedi, M., Mahdian Naser, M. (2011). Use of lactobacillus plntarum starter culture during green olive fermentation processing with aerated condition. Journal of food science and technology, 8(28), 99-106.
[49] Garcia Garcia, P., and Dura Quintana (1985). Fermentacion de aceitunas negras maduras en salmuera. Grasas y Aceites 36, 14-20.
[50] Todar K. (2010). textbook of bacteriology. MadisonWiscons. Available from: http://textbookofbacteriology.net/lactics_1.html.