خصوصیات ضدباکتریایی و پایداری میکروامولسیون‌های حاوی اسانس زیره سبز (Cuminum cyminum) و لعل کوهستان (Oliveria decumbens Vent) تهیه شده با فراصوت

نویسندگان
1 گروه مهندسی شیمی، دانشگاه صنعتی جندی شاپور دزفول
2 بخش میکروب شناسی شرکت داروسازی باریج اسانس، کاشان
3 گروه فیزیک، دانشکده علوم پایه، دانشگاه صنعتی جندی شاپور دزفول
چکیده
در این مقاله امولسیون های حاصل از دو اسانس زیره سبز و لعل کوهستان در غلظت های 1، 3، 5، 10 و 15% با استفاده از امواج فراصوت تهیه شده و خصوصیات فیزیکی و ضد میکروبی این امولسیون ها بررسی گردید. نتایج نشان داد که تمامی امولسیون ها پس از سانتریفوژ پایداری خود را حفظ کردند، همچنین تمام امولسیون‏هایی که چرخه‏ی حرارت- سرما را گذارنده بودند، پایدار بوده، اما پس از گذراندن چرخه‏ی انجماد-خروج از انجماد دو فاز شدند. از میان نمونه امولسیونها، نمونه امولسیون‏ها 10 و 15%ی که در دمای 45 درجه به مدت 35 روزه نگهداری شدند، دوفاز شدند. اندازه‏گیری کدورت نمونه‏های امولسیون با اسپکتوفتومتر، نشان داد که با افزایش غلظت فاز پراکنده، امولسیون کدورت بیشتری می‏یابد. هر دو امولسیون در برابر دو باکتری اثر بازدارندگی داشتند، اما امولسیون زیره در برابر اشرشیاکلی و امولسیون لعل کوهستان در برابر استافیلوکوکوس اورئوس هاله ی بزرگتری تشکیل دادند. از طرفی در هر دو امولسیون با افزایش غلظت، قطرهاله عدم رشد افزایش یافت.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Antibacterial properties and stability of emulsions containing Cuminum cyminum and Oliveria decumbens Vent. essential oils prepared by ultrasound

نویسندگان English

Habibollah Abbasi 1
HODA FAHIM 1
Mohaddese Mahboubi 2
Nemat Tahmasbi 3
1 Department of Chemical Engineering, Jundi-Shapur University of Technology
2 Department of Microbiology, Medicinal Plants, Research Center of Barij, Kashan, Iran.
3 Department of Physics, Faculty of Science, Jundi-Shapur University of Technology
چکیده English

Physical and antibacterial properties of ultrasound assisted emulsions from two essential oils (Cuminum cyminum and Oliveria decumbens) at concentrations of 1, 3, 5, 10 and 15% were studied. The results showed that all emulsions were stable after centrifugation. Although the samples were stable after heat-cool cycles, they became unstable at the freeze-thaw cycles. Emulsion samples with concentrations of 10 and 15%, were stored at 45 ºC for 35-days were unstable and became two-phase. Measuring the turbidity of emulsion samples with a spectrophotometer showed that with increasing concentrations of dispersed phase, the emulsion turbidity increased. Both emulsions showed antibacterial activity. But the C. cyminum emulsions showed higher inhibition zones against Escherichia coli, while O. decumbens emulsions represented higher inhibition zone against Staphylococcus aureus. Generally, the inhibition zone diameters of both emulsions increased dose dependently.

کلیدواژه‌ها English

Emulsion
Oliveria decumbens Vent
Cuminum cyminum
Essential oil
Ultrasound
1. Abismaıl, B., Canselier, J. P., Wilhelm, A. M., Delmas, H., & Gourdon, C. (1999). Emulsification by ultrasound: drop size distribution and stability. Ultrasonics Sonochemistry, 6(1-2), 75-83.
2. Karimi, N., Mohammadifar, MA., Nayebzade, K. (2013). Effect of two types of Iranian gum tragacanth on stability and rheological properties of oil-in-water emulsion, Iranian Journal of Nutrition Sciences & Food Technology, 3(8): 87-98.
3. Shaaban, H. A., Sadek, Z., Edris, A. E., & Saad-Hussein, A. (2015). Analysis and antibacterial activity of Nigella sativa essential oil formulated in microemulsion system. Journal of oleo science, 64(2), 223-232.
4. Alizadeh, H., Farzaneh, M., Azami, Z. (2015). The effect of cinnamon essential oil nanoemulsion on reductioon of postharvest decay of strawberry. Biological control of pests and plant diseases. 4:1. 57-64.
5. Canselier, J. P., Delmas, H., Wilhelm, A. M., & Abismail, B. (2002). Ultrasound emulsification—an overview. Journal of dispersion science and technology, 23(1-3), 333-349.
6. Ghosh, V., Saranya, S., Mukherjee, A., & Chandrasekaran, N. (2013). Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. Journal of nanoscience and nanotechnology, 13(1), 114-122.
7. Miri, M., Koocheki, A., Mohebbi, , M., Najafi, M. 2017. Effect of maltodextrin and whey protein concentrate on thyme essential oil nanoemulsion. Journal of food science and technology. 65:14. 149-160.
8. Hasanzadeh, H., Alizadeh, M., Rezazad Bari, M. 2017. Production and assessment of physicochemical characteristics and encapsulation efficiency of garlic essential oil nanoemulsions. Journal of food research. 27:4. 159-170.
9. Masoumiو V O., tajik, H., moradi, M., Forough, M., Shahabi, N. 2016. Antimicrobial effects of zataria multiflora boiss. Essential oil nanoemulsion against Escherichia Coli O157:H7. J urmia univ med sci; 27 (7) :608-617.
10. Mahboubi, M., Feizabadi, M.M., Haghi, G., Hosseini, H. (2008). Antimicrobial activity and chemical composition of essential oil from Oliveria decumbens Vent. Iranian journal of medicinal and aromatic plants, 24:1. 56-65.
11. Haghiroalsadat F, Vahidi A, Sabour M, Azimzadeh M, Kalantar M, Sharafadini M. The indigenous cuminum cyminum L. of yazd province: chemical assessment and evaluation of its antioxidant effects. J shahid sadoughi univ med sci; 19(4): 472-81.
12. Roomiani, L. (2013). Antibacterial activity of Cuminum cyminum essential oil and nisin on Streptococcus inaie in lab and fillets of rainbow trout. Iranian scientific fisheries journal.22:3. 50-59.
13. Mirhosseini, H., Tan, C. P., Hamid, N. S., & Yusof, S. (2008). Effect of arabic gum, xanthan gum and orange oil contents on ζ-potential, conductivity, stability, size index and pH of orange beverage emulsion. Colloids and Surfaces A: Physicochemical and engineering aspects, 315(1-3), 47-56.
14. Din, M. U., Sarfraz, R. A., & Shahid, T. (2015). Biological activity‐based assessment of essential oil emulsions. Journal of food processing and preservation, 39(6), 1452-1456.
15. Dłużewska, E., Stabiecka, A., & Maszewska, M. (2006). Effect of oil phase concentration on rheological properties and stability of beverage emulsion. Acta scientiarum polonorum technologia alimentaria, 5(2), 147-156.
16. Razavizadeh, B. M., Khanmohammadi, F., Azizi, S. N. (2015). Study of physicochemical properties of rice Bran oil in water microemulsion: effect of ultrasound and concentration of tween 80. Food science and technology.13:1. 21-30.
17. Tang, X., Huston, K. J., & Larson, R. G. (2014). Molecular dynamics simulations of structure–property relationships of tween 80 surfactants in water and at interfaces. The Journal of physical chemistry B, 118(45), 12907-12918.
18. Homayoonfal, M., Khodaiyan, F., Mousavi, M., Hosseini Panjak, M. (2013). Preparation and characterization evaluations of walnut oil-based emulsions using response surface methodology. Iranian journal of nutrition sciences & food technology, 8:2, 191-199.
19. Tahir, H. U., Sarfraz, R. A., Ashraf, A., & Adil, S. (2016). Chemical composition and antidiabetic Activity of essential oils obtained from two spices (Syzygium aromaticum and Cuminum cyminum). International journal of food properties, 19(10), 2156-2164.
20. Lin, C., He, G., Dong, C., Liu, H., Xiao, G., & Liu, Y. (2008). Effect of oil phase transition on freeze/thaw-induced demulsification of water-in-oil emulsions. Langmuir, 24(10), 5291-5298.
21. Ramisetty, K. A., Pandit, A. B., & Gogate, P. R. (2015). Ultrasound assisted preparation of emulsion of coconut oil in water: understanding the effect of operating parameters and comparison of reactor designs. Chemical engineering and processing: process intensification, 88, 70-77.
22. Gachkar, L., Yadegari, D., Rezaei, M. B., Taghizadeh, M., Astaneh, S. A., & Rasooli, I. (2007). Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food chemistry, 102(3), 898-904.
23. Masoomi, V., Tajik, H., Moradi, M., Forough, M., Shahabi, N. (2016). Antimicrobial effects of Zataria multiflora boiss. essential oil nanoemulsion against Escherichia coli O157:H7. The Journal of Urmia University of Medical Sciences. 27(7), 608-617.
24. Amin, G., Sourmaghi, M. S., Zahedi, M., Khanavi, M., & Samadi, N. (2005). Essential oil composition and antimicrobial activity of Oliveria decumbens. Fitoterapia, 76(7-8), 704-707.