ویژگیهای فیزیکوشیمیایی و پایداری اکسایشی نانوپوشینه های روغن ماهی و ویتامین E تولید شده با استفاده از تکنیک کوآسرواسیون ترکیبی

نویسندگان
Sari Agricultural Sciences and Natural Resources University
چکیده
یکی روش های مختلفی که برای ریزپوشانی استفاده می شود، تکنیک کوآسرواسیون ترکیبی است. هدف از این پژوهش بررسی تأثیر درصد روغن ماهی (1،3 و 5%)، درصد بیوپلیمرکل (1،3 و 5%) و سرعت هموژنایزر (7000،9000 و 11000rpm) بر ویژگی‌های فیزیکوشیمیایی و پایداری اکسایشی پودرهای تولیدی است. بدین منظور از روش سطح پاسخ [1] (RSM) در قالب طرح مرکب مرکزی[2] (CCD) استفاده گردید.امولسیون بهینه به‌دست‌آمده در پوشش ژلاتین و صمغ عربی (با نسبت1:1) شامل (روغن ماهی 1%، بیوپلیمرکل 1% و سرعت هموژنایزر rpm 7000) بوده و دارای بازدهی ریزپوشانی 97/97% بود، و به‌منظور بررسی پایداری اکسایشی تیمارها به مدت 3 ماه در دمای 4 درجه سانتی‌گراد قرار گرفتند. نتایج حاصل از پژوهش نشان داد با افزایش درصد روغن ماهی شاخص روشنایی روشنایی ( ) و سفیدی پودر ها کاهش و شاخص زردی ( ) افزایش یافت، نتایج حاصل از بررسی نرخ اکسیداسیون نشان داد مقادیر تیوباربیتوریک اسید (TBA) در نمونه های ریزپوشانی شده به طور معنی داری نسبت به نمونه های شاهد کمتر بود، همپنین در نمونه ریزپوشانی شده حاوی ویتامین E نسبت به نمونه شاهد(فاقد ویتامین E) مقادیر تیوباربیتوریک اسید در ماه اول نسبت به سایر دوره ها به طور معنی دار کمتر بود.





[1] Response surface methodology

[2] Central composite rotatable design
کلیدواژه‌ها

موضوعات


عنوان مقاله English

ghjkl hkl jkl;

نویسندگان English

Seyed Ali Jafarpour
Fatemeh Mirzaei
Sari Agricultural Sciences and Natural Resources University
چکیده English

One of the many ways that encapsulation are used is the complex coaservation techniques. The purpose of this study was to evaluate the effect of fish oil percentage(1%, 3% and 5%), total biopolymer percent (1%, 3% and 5%) and homogenizer speed (7000, 9000 and 11000 rpm) on the physicochemical and oxidative stability of produced powders. To this end, the response surface method was used in the central composite design. Optimized emulsion obtained in gelatin and gum coating (1: 1 ratio) contains (fish oil 1%, total biopolymer percent 1%, homogenizer speed 7000 rpm) which and encapsulation efficiency is 97.97% , and In order to evaluate the oxidative stability of the treatments, they were placed at 4 ° C for 3 months. The results of the study showed that by increasing the percentage of fish oil, the powder lighteness index and whiteness decreased and the yellowness index increased. The results of the study the rate of oxidation showed that thiobarbituric acid (TBA) amount were significantly lower in encapsulated samples than in control samples also, in a encapsulated sample containing vitamin E, the amount of thiobarbituric acid in the first month was significantly lower than the other periods in compared to with the control sample.

کلیدواژه‌ها English

Fish oil
Vitamin E
Physicochemical Characteristics
Oxidative stability
Complex Coaservation
1. Jafarpour, S., R. Esfahani, and S. Jafari, Efficiency evaluation of nanoencapsulation of omega-3 fatty acids with gelatin-Arabic gum complex using coaservation technique. Iranian Scientific Fisheries Journal, 2016. 25(2): p. 29-42.in persian
2. Jafarpour, S.A., e. Sharifi, and m. hosseini, Evaluating the stability and controlling the oxidation rate of Rainbow trout fish oil (Oncorhynchus mykiss) in nanocapsules containing clove essential oil (Syzygiumaromaticum). Iranian Scientific Fisheries Journal, 2018. 26(6): p. 57-68.in persian
3. Soltani, s. and a. Madadloo, encapsoulation of Omega-3 and food enrichment, in The first national food meal conference,2014 : Agricultural and Natural Resources Campus of Karaj University of Tehran.in persian
4. Abdulkadir, M., G. Abubakar, and A. Mohammed, Production and characterization of oil from fishes. Journal of Engineering and Applied Sciences, 2010. 5(7): p. 769-776.
5. White, P.J., Methods for measuring changes in deep-fat frying oils. Food technology (USA), 1991.
6. Frankel, E.N., et al., Oxidative stability of fish and algae oils containing long-chain polyunsaturated fatty acids in bulk and in oil-in-water emulsions. Journal of Agricultural and Food Chemistry, 2002. 50(7): p. 2094-2099.
7. Chang, P.-S., J. Lee, and J.L.J. Lee, Development of a new colorimetric method determining the yield of microencapsulation of α-tocopherol. Journal of Agricultural and food chemistry, 2005. 53(19): p. 7385-7389.
8. Feng, Y., Study On The Microcapsulation Of Vitamin E By Complex Coacervation. 2009: China.
9. Meydani, S.N., et al., Vitamin E supplementation and in vivo immune response in healthy elderly subjects: a randomized controlled trial. Jama, 1997. 277(17): p. 1380-1386.
10. Hogan, S.A., et al., Emulsification and microencapsulation properties of sodium caseinate/carbohydrate blends. International Dairy Journal, 2001. 11(3): p. 137-144.
11. Lamprecht, A., U. Schäfer, and C.-M. Lehr, Influences of process parameters on preparation of microparticle used as a carrier system for O-3 unsaturated fatty acid ethyl esters used in supplementary nutrition. Journal of Microencapsulation, 2001. 18(3): p. 347-357.
12. Xiao, Z., W. Li, and G. Zhu, Effect of wall materials and core oil on the formation and properties of styralyl acetate microcapsules prepared by complex coacervation. Colloid and Polymer Science, 2015. 293(5): p. 1339-1348.
13. Kralovec, J.A., et al., A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources. Food Chemistry, 2012. 131(2): p. 639-644.
14. jafarpour, s.a., e. sharifi, and m.h. hosseini, Evaluating the stability and controlling the oxidation rate of Rainbow trout fish oil (Oncorhynchus mykiss) in nanocapsules containing clove essential oil (Syzygiumaromaticum). Iranian Scientific Fisheries Journal, 2018. 26(6): p. 57-68.in persian
15. Heinzelmann, K., et al., Protection of fish oil from oxidation by microencapsulation using freeze‐drying techniques. European Journal of Lipid Science and Technology, 2000. 102(2): p. 114-121.
16. Wang, B., B. Adhikari, and C.J. Barrow, Optimisation of the microencapsulation of tuna oil in gelatin–sodium hexametaphosphate using complex coacervation. Food Chemistry, 2014. 158: p. 358-365.
17. Pourashouri, P., et al., Oxidative stability of spray-dried microencapsulated fish oils with different wall materials. Journal of aquatic food product technology, 2014. 23(6): p. 567-578.
18. Lin, C.-Y. and B.-Y. Lin, Fatty Acid Characteristics of Isochrysis galbana Lipids Extracted Using a Microwave-Assisted Method. Energies, 2015. 8(2): p. 1154-1165.
19. Liu, S., N. Low, and M.T. Nickerson, Entrapment of flaxseed oil within gelatin-gum arabic capsules. Journal of the American Oil Chemists' Society, 2010. 87(7): p. 809-815.
20. Pokorny, J. and A. Dieffenbacher, Determination of 2-thiobarbituric acid value: direct method-results of a collaborative study and the standardised method. Pure and applied chemistry, 1989. 61(6): p. 1165-1170.
21. Klaypradit, W. and Y.-W. Huang, Fish oil encapsulation with chitosan using ultrasonic atomizer. LWT-Food Science and Technology, 2008. 41(6): p. 1133-1139.
22. Sharifi, E., S.A. jafarpour, and M. hosseini, encapsulation of omega 3 fatty acids and clove essential oil within complex coacervates resulted from fish gelatin and gum Arabic interaction, in Thesis. 2017, Sari Agricultural Sciences and Natural Resources University.in persian
23. Mehrad, B., et al., Characterization of dried fish oil from Menhaden encapsulated by spray drying. Aquaculture, Aquarium, Conservation & Legislation, 2015. 8(1): p. 57-69.
24. Karaca, A.C., M. Nickerson, and N.H. Low, Microcapsule production employing chickpea or lentil protein isolates and maltodextrin: Physicochemical properties and oxidative protection of encapsulated flaxseed oil. Food chemistry, 2013. 139(1): p. 448-457.
25. Pratiwi, I.Y., P. Darmadji, and P. Hastuti. Effect of storage temperature on the stability of microencapsulated essential oil from cinnamon (Cinnamomum burmanii). in AIP Conference Proceedings. 2016. AIP Publishing.
26. Barriuso, B., I. Astiasarán, and D. Ansorena, A review of analytical methods measuring lipid oxidation status in foods: a challenging task. European Food Research and Technology, 2013. 236(1): p. 1-15.
27. Annamalai, J., C. Dushyant, and V. Gudipati, Oxidative stability of microencapsulated fish oil during refrigerated storage. Journal of food processing and preservation, 2015. 39(6): p. 1944-1955.
28. Khanipour, A., S. Fathi, and Y. Fahim Dejban, Chemical indicators of spoilage and shelf-life of the consolidated burgers (Kilka–Silver carp) during cold storage at-18ë. ISFJ, 2013. 22(3): p. 41-49.
29. Jónsdóttir, R., M. Bragadóttir, and G. Arnarson, Oxidatively derived volatile compounds in microencapsulated fish oil monitored by solid‐phase microextraction (SPME). Journal of food science, 2005. 70(7): p. c433-c440.
30. Baik, M.Y., et al., Effects of antioxidants and humidity on the oxidative stability of microencapsulated fish oil. Journal of the American Oil Chemists' Society, 2004. 81(4): p. 355-360.
31. Binsi, P., et al., Structural and oxidative stabilization of spray dried fish oil microencapsulates with gum arabic and sage polyphenols: Characterization and release kinetics. Food Chemistry, 2017. 219: p. 158-168.
32. Hu, Z. and Q. Zhong, Determination of thiobarbituric acid reactive substances in microencapsulated products. Food chemistry, 2010. 123(3): p. 794-799.
33. Wang, Q., et al., Characterization, stability, and in vitro release evaluation of carboxymethyl chitosan coated liposomes containing fish oil. Journal of food science, 2015. 80(7): p. C1460-C1467.