مقایسه اثر تریپسین ماهی سفید (Rutilus frisii kutum) با آنزیم های تجاری بر خواص عملکردی و آنتی اکسیدانی پروتئین هیدرولیز شده سویا

نویسندگان
1 گروه علوم و صنایع غذایی، دانشگاه کشاورزی و منابع طبیعی ساری، مازندران، ایران.
2 گروه بیوتکنولوژی مؤسسۀ تحقیقات واکسن و سرم سازی رازی، البرز، کرج، ایران
3 گروه شیلات دانشکدۀ منابع طبیعی و محیط زیست دانشگاه ملایر، همدان، ایران.
چکیده
امروزه اصلاح خواص عملکردی پروتئین‌ها با استفاده از آنزیمهای پروتئولیتیکی به منظور کاربرد هیدرولیزهای حاصل به عنوان آنتی‌اکسیدان طبیعی و یا عوامل امولسیفایر و ‌کف‌زا، متداول گشته است. در این پژوهش پروتئین بافت‌دار سویا با استفاده از آنزیم‌های تریپسین تجاری (با منشا خوک)، تریپسین استخراج شده از ماهی سفید، پپسین، آلکالاز و پاپائین هیدرولیز شده و نتایج نشان داد بیشترین درجه هیدرولیز به ترتیب مربوط به تریپسین تجاری خوک 34/19 %، آلکالاز 04/16 %و تریپسین ماهی سفید 29/14 % است. در مقایسه با پروتئین هیدرولیز نشده، بیشترین افزایش ظرفیت امولسیفایری (معنی دار p < 0.05 ) توسط آنزیم تریپسین تجاری و ماهی سفید ایجاد شده و بیشترین پایداری امولسیون نیز مربوط به هیدرولیزهای تریپسین ماهی سفید و آلکالاز بود. در مقایسه خواص کف‌زایی هیدرولیزها نسبت به پروتئین هیدرولیز نشده، بیشترین افزایش ظرفیت کف توسط تریپسین تجاری و پس از آن تریپسین ماهی سفید مشاهده شد و کمترین افزایش مربوط به آنزیم آلکالاز بود و بیشترین پایداری کف را هیدرولیز تریپسین تجاری داشته و آنزیم تریپسین ماهی سفید به رغم کارایی کمتر در مقایسه با تریپسین تجاری، در مقایسه با سایر آنزیمها عملکرد بهتری داشته و در مقام دوم قرار گرفت. هیدرولیزهای تهیه شده با تریپسین ماهی سفید بیشترین قدرت مهار رادیکال DPPH و بیشترین قدرت احیا را داشته اما کمترین قدرت مهار رادیکال OH- را داشتند. نتایج این مطالعه نشان داد که تریپسین ماهی سفید قادر است هیدرولیزی با ویژگی‌های عملکردی و آنتی‌اکسیدانی خوب و قابل مقایسه با سایر آنزیم‌های تجاری تولید کند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparison of the Effect of Caspian kutum trypsin (Rutilus frisii kutum) with commercial enzymes on the functional and antioxidant properties of soy protein hydrolysates

نویسندگان English

Zohreh Hasebi 1
Ali Motamedzadegan 1
Rasool Madani 2
Abbas Zamani 3
1 Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari, Mazandaran, Iran
2 Department of Biotechnology, Razi Vaccine and Serum Research institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
3 Department of Fisheries, Faculty of Natural Resources and Environment, Malayer University, Malayer, Hamedan, Iran .
چکیده English

Nowadays, modifying of the functional properties of proteins by proteolytic enzymes is a novel way in order to use the hydrolysates as a natural antioxidant, emulsifier or foaming agent. In this study, TSP was hydrolyzed by commercial trypsin (porcine), trypsin extracted from Caspian Kutum, pepsin, alcalase and papain. The results showed that the highest degree of hydrolysis (DH%) was related to commercial trypsin (19.34 %), Alcalase (16.04%) and Kutum trypsin (14.29%), respectively. The highest emulsifying capacity was obtained by commercial and Kutum trypsin, compared to non-hydrolyzed protein, and Alcalase hydrolysates had the highest emulsion stability (p <0.05). Higher foaming capacity was observed in hydrolysates by commercial trypsin, followed by Kutum trypsin, compared to non-hydrolyzed protein. However, the lowest value was related to Alcalase. In the case of foam stability, the commercial trypsin hydrolysate had the most stable foam, while Kutum trypsin, despite its lower efficiency compared to commercial trypsin, had the second place. Hydrolysates prepared with Kutum trypsin had the highest DPPH-scavenging ability and reducing power but the lowest OH-radical scavenging power. The results of this study show that kutum trypsin can produce soy protein hydrolysates with good functional and antioxidant properties, which are comparable to commercial enzymes.

کلیدواژه‌ها English

Trypsin
Papain
Soy protein
Foaming properties
Emulsion activity index
Mullally, M.M., O'Callaghan, D.M., FitzGerald, R.J., Donnelly, WJ., Dalton, J.P., 1994, Proteolytic and peptidolytic activities in commercial pancreatic protease preparations and their relationship to some whey protein hydrolyzate characteristics. Journal of Agricultural and Food Chemistry,. 42(12): p. 2973-2981.
2. Korhonen, H., 2009, Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1(2): p. 177-187.
3. Liu, J., Yu, Z., Zhao, W., Lin, S., et al., 2010, Isolation and identification of angiotensin-converting enzyme inhibitory peptides from egg white protein hydrolysates. Food Chemistry, 122(4): p. 1159-1163.
4. Gibbs, B.F., Zougman, A., Masse, R., Mulligan, C.,2004, Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food research international, 37(2): p. 123-131.
5. Parrado, J., Miramontes, E., Jover, M., Gutierrez, J.F., et al. , 2006, Preparation of a rice bran enzymatic extract with potential use as functional food. Food Chemistry, 98(4): p. 742-748.
6. Zambrowicz, A., Pokora, M., Senter, B., Dabrowska, A., et al., 2015, Multifunctional peptides derived from an egg yolk protein hydrolysate: isolation and characterization. Amino Acids, 47: p. 369-380.
7. Ito, N., Hirose, M., Fukushima, S., Tsuda, H., et al., 1989, Studies on antioxidants: their carcinogenic and modifying effects on chemical carcinogenesis. Food and Chemical Toxicology, 24(10-11): p. 1071-1082.
8. Zhou, D.-Y., Zhu, B.W., Qiao, L., Wu, H.T., et al., 2012, In vitro antioxidant activity of enzymatic hydrolysates prepared from abalone (Haliotis discus hannai Ino) viscera. Food and Bioproducts Processing, 90(2): p. 148-154.
9. Singh, P., Kumar, R., Sabapathy, S.N., Bawa, A.S., 2008, Functional and Edible Uses of Soy Protein Products. Comprehensive Reviews in Food Science and Food Safety, 7(1): p. 14-28.
10. Martínez, K.D., Carrera Sanchez, C., Rodriguez Patino, J.M., Pilosof, M.R., 2009, Interfacial and foaming properties of soy protein and their hydrolysates. Food Hydrocolloids, 23(8): p. 2149-2157.
11. Zhang, L., Li, J., Zhou, K., 2010, Chelating and radical scavenging activities of soy protein hydrolysates prepared from microbial proteases and their effect on meat lipid peroxidation. Bioresource Technology, 101(7): p. 2084-2089.
12. Don, L.B., Pilosof, A., Bartholomai, G., 1991, Enzymatic modification of soy protein concentrates by fungal and bacterial proteases. Journal of the American Oil Chemists Society, 68(2): p. 102-105.
13. Kim, S.Y., Park, P.S., Rhee, K.C., 1990, Functional properties of proteolytic enzyme modified soy protein isolate. Journal of Agricultural and Food Chemistry, 38(3): p. 651-656.
14. Bishov, S. and Henick, A., 1972, Antioxidant effect of protein hydrolyzates in a freeze-dried model system. Journal of Food Science, 37(6): p. 873-875.
15. de Castro, R.J.S. and Sato, H.H., 2014, Comparison and synergistic effects of intact proteins and their hydrolysates on the functional properties and antioxidant activities in a simultaneous process of enzymatic hydrolysis. Food and Bioproducts Processing, 92(1): p. 80-88.
16. Oliveira, C., Coletto, D., Correa, A.P.F., Daroit, D.J., et al., 2014, Antioxidant activity and inhibition of meat lipid oxidation by soy protein hydrolysates obtained with a microbial protease. International Food Research Journal, 21(2): p. 775-781.
17. Nielsen, P., Petersen, D., Dambmann, C., 2001, Improved method for determining food protein degree of hydrolysis. Journal of food science, 66(5): p. 642-646.
18. Pearce, K.N. and Kinsella, J.E., 1978, Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry, 26(3): p. 716-723.
19. Sathe, S.K., Salunkhe, D.K., 1981, Functional Properties of the Great Northern Bean (Phaseolus vulgaris L.) Proteins: Emulsion, Foaming, Viscosity, and Gelation Properties. Journal of Food Science, 46(1): p. 71-81.
20. Shimada, K., Fujikawa, K., Yahara, K., Nakamura, T., 1992, Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of agricultural and food chemistry, 40(6): p. 945-948.
21. Yen, G.-C. and Chen, H.-Y., 1995, Antioxidant activity of various tea extracts in relation to their antimutagenicity. Journal of Agricultural and Food Chemistry, 43(1): p. 27-32.
22. Zia-Ul-Haq, M., Ahmad, S., Amarowicz, R., De Feo, V., 2013, Antioxidant activity of the extracts of some cowpea (Vigna unguiculata (L) Walp.) cultivars commonly consumed in Pakistan. Molecules, 2013. 18(2): p. 2005-2017.
23. Tavano, O.L., 2013, Protein hydrolysis using proteases: an important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90: p. 1-11.
24. Ma, Y., Sun, X., Wang, L., 2015, Study on Optimal Conditions of Alcalase Enzymatic Hydrolysis of Soybean Protein Isolate. Vol. 9: p.154-158.
25. Rostammiry, L., Saeidiasl, M.R., Safari, R., Javadian, R., 2017, Optimization of the Enzymatic Hydrolysis of Soy Protein Isolate by Alcalase and Trypsin. Biosciences Biotechnology Research Asia, 14(1): p. 193-200.
26. Modanlow, M., Rafiee, G.R., Motamedzadegan, A., Moeeni, S., et al., 2011, Effect of Different Ratio of Trypsin Enzyme, Times and Temperatures on Protein Recovery of Viscera Yellow Fin Tuna (Thunus albacores). Iranian Food Science and Technology Research Journal; Vol 7, Issue 2.
27. Meinlschmidt, P., Sussmann, D., Schweiggert-Weisz, U., Eisner, P., 2016 , Enzymatic treatment of soy protein isolates: effects on the potential allergenicity, technofunctionality, and sensory properties. Food science & nutrition, 4(1): p. 11-23.
28. Hrckova, M., Rusnakova, M., and Zemanovic, J., 2002, Enzymatic hydrolysis of defatted soy flour by three different proteases and their effect on the functional properties of resulting protein hydrolysates. Vol. 20. 2002. 7-14.
29. Creusot, N., Gruppen, H., van Koningsveld, G., De Kruif, C.G., et al., 2006, Peptide–peptide and protein–peptide interactions in mixtures of whey protein isolate and whey protein isolate hydrolysates. Vol. 16. 840-849.
30. Utsumi, S. and Kinsella, J.E., 1985, Structure-function relationships in food proteins: subunit interactions in heat-induced gelation of 7S, 11S, and soy isolate proteins. Journal of Agricultural and Food Chemistry, 33(2): p. 297-303
31. Zhao, X. and Hou, Y., 2009, Limited hydrolysis of soybean protein concentrate and isolate with two proteases and the impact on emulsifying activity index of hydrolysates, imag. Vol. 8. 2009. 3314-3319
32. de la Barca, A.M.C., Ruiz-Salazar, R.A., Jara-Marini, M.E., 2000, Enzymatic Hydrolysis and Synthesis of Soy Protein to Improve its Amino Acid Composition and Functional Properties. Journal of Food Science, 65(2): p. 246-253.
33. Jung, S., Roussel- Philippe, C., Briggs, J.L., Murphy, P.A., et al., 2004, Limited hydrolysis of soy proteins with endo- and exoproteases. Journal of the American Oil Chemists' Society, 81(10): p. 953.
34. Wu, W.U., Hettiarachchy, N.S., Qi, M. , 1998, Hydrophobicity, solubility, and emulsifying properties of soy protein peptides prepared by papain modification and ultrafiltration. Journal of the American Oil Chemists' Society, 75(7): p. 845-850.
35. Yu, M.A. and Damodaran, S., 1991, Kinetics of destabilization of soy protein foams. Journal of Agricultural and Food Chemistry, 39(9): p. 1563-1567.
36. Abu-Salem, F.M., Mahmoud, M.H., El-Kalyoub, M.H., Gibriel, A.Y., et al., 2013, Characterization of antioxidant peptides of soybean protein hydrolysate. in Proceedings of World Academy of Science, Engineering and Technology. World Academy of Science, Engineering and Technology (WASET).
37. Jimenez-Ruiz, E.I., Calderon de la Barca, A.M., Sotelo-Mundo, R.R., Arteaga-Mackinney, G.E.,et al., 2013, Partial characterization of ultrafiltrated soy protein hydrolysates with antioxidant and free radical scavenging activities. J Food Sci, 78(8): p. C1152-8.
38. Moure, A., Domínguez, H., Parajó, J.C., 2006, Antioxidant properties of ultrafiltration-recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochemistry, 41(2): p. 447-456.
39. Sefatie, S.R., Tounkara, F., Karangwa, E.,Young, H.S., et al., 2013, In Vitro Antioxidant Activities of Protein Hydrolysate from Germinated Black Soybean (Glycine max L.). Vol. 5, p. 453-459.
40. Cumby, N., Zhong, Y., Naczk, M., & Shahidi, F., 2008, Antioxidant activity and water-holding capacity of canola protein hydrolysates. Food Chemistry, 109(1), 144-148.