[1] Fadavi, A., Barzegar, M., Azizi, M.H. 2006. Determination of fatty acids and total lipid content in oilseed of 25 pomegranates varieties grown in Iran. J. Food Compos. Anal., 19, 676–680.
[2] Khoddami, A., Roberts, T.H. 2015. Pomegranate oil as a valuable pharmaceutical and nutraceutical. Lipid Technol., 27, 40-42.
[3] Mohagheghi, M., Rezaei, K., Labbafi, M., Mousavi, S. M. E. 2011. Pomegranate seed oil as a functional ingredient in beverages, Eur. J. Lipid Sci. Technol., 113, 730–736.
[4] Goula, A.M., Lazarides, H.N. 2015. Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: The cases of olive mill and pomegranate wastes. J. Food Eng., 167, 45-50.
[5] Goula A. M., Adamopoulos, K.G. 2012. A method for pomegranate seed application in food industries: Seed oil encapsulation. Food Bioprod process., 90, 639–652.
[6] Cavazos-Garduño, A., Ochoa Flores, A.A., Serrano-Niño, J.C., Martínez-Sanchez, C.E., Beristain, C.I., García, H.S. 2015. Preparation of betulinic acid nanoemulsions stabilized by x-3 enriched ,phosphatidylcholine. Ultrason Sonochem., 24, 204-213.
[7] Li, P.H., Lu, W.Ch. 2016. Effects of storage conditions on the physical stability of D-limonene nanoemulsion. Food Hydrocoll. 53, 218-224.
[8] Yang, Y., Marshall-Breton, Ch., Leser, M. E., Sher, A. A., McClements, D. J. 2012. Fabrication of ultrafine edible emulsions: Comparison of high-energy and low-energy homogenization methods. Food Hydrocoll., 29, 398-406.
[9] Saberi, A.H., Fang, Y., McClements, D. J. 2013. Fabrication of Vitamin E-Enriched Nanoemulsions by Spontaneous Emulsification: Effect of Propylene Glycol and Ethanol on Formation, Stability, and Properties. Food Res. Int., 54, 812-820.
[10] Tabibiazar, M., Davaran, S., Hashemi, M., Homayonirad, A., Rasoulzadeh, F., Hamishehkar, H., Mohammadifar, M. A. 2015. Design and fabrication of a food-grade albumin-stabilized nanoemulsion. Food Hydrocoll., 44, 220-228.
[11] Kentish, S., Wooster, T., Ashokkumar, M., Balachandran, S., Mawson, R., Simons, L. 2008. The use of ultrasonics for nanoemulsion preparation. Innov Food Sci Emerg Technol., 9, 170-175.
[12] Leong, T. S. H., Wooster, T. J., Kentish, S. E., Ashokkumar, M. 2009. Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem., 16, 721–727.
[13] Chang, Y., McClements, D. J. 2014. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature. J. Agric. Food Chem. 62, 2306-2312.
[14] Chang, Y., McLandsborough, L., McClements, D. J. 2013. Physicochemical Properties and Antimicrobial Efficacy of Carvacrol Nanoemulsions Formed by Spontaneous Emulsification, J. Agric. Food Chem. 61, 8906−8913.
[15] Gulotta, A., Saberi, A. H., Nicoli, M. C., McClements, D. J. 2014. Nanoemulsion-Based Delivery Systems for Polyunsaturated (ω-3) Oils: Formation Using a Spontaneous Emulsification Method, J. Agric. Food Chem. 62, 1720- 1725.
[16] Guttoff, M., Saberi, A.H., McClements, D.J. 2015. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability, Food Chem. 171, 117–122.
[17] Ghosh, V., Mukherjee, A., Chandrasekaran, N. 2013. Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason Sonochem., 20, 338–344.
[18] Komaiko, J., McClements, D. J. 2014. Optimization of isothermal low-energy nanoemulsion formation: Hydrocarbon oil, non-ionic surfactant, and water systems, J. Colloid Interface Sci., 425, 59–66.
[19] Sugumar, S., Singh, S., Mukherjee, A., Chandrasekaran, N. 2016. Nanoemulsion of orange oil with non ionic surfactant produced emulsion using ultrasonication technique: evaluating against food spoilage yeast. Appl Nanosci., 6, 113-120.
[20] Barradas, T. N., Bucco de Campos, V. E., Senna, J.P., Coutinho, C. D. S. C., Tebaldi, B. S., Silva, K. G. H., Mansur, C. R. E. 2015. Development and characterization of promising o/w nanoemulsions containing sweet fennel essential oil and non-ionic sufactants, Colloid. Surf. A.: Physicochem. Eng. Asp. 480, 214-221.
[21] Yang, Y., Leser, M. E., Sher, A. A., McClements, D. J. 2013. Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale). Food Hydrocoll., 30, 589-596.
[22] McClements, D. J., Decker, E. A. 2000. Lipid oxidation in oil-in-water emulsions:
Impact of molecular environment on chemical reactions in heterogeneous food system. J. Food Sci., 65, 1270-1282.
[23] Walker, R. M., Decker, E. A., McClements, D. J. 2015. Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: Effect of surfactant concentration and particle size, J. Food Eng. 164, 10-20.
[24] Waraho, T., McClements, D. J., Decker, E. A. 2011. Mechanisms of lipid oxidation in food dispersions, Trends Food Sci. Technol. 22, 3-13.
[25] Nuchi, C. D., Hernandez, P., McClements, D. J., Decker, E. A. 2002. Ability of lipid hydroperoxides to partition into surfactant micelles and alter lipid oxidation rates in emulsions, J. Agric. Food Chem. 50, 5445-5449.
[26] Kiralan, S.S., Doğu-Baykut, E., Kittipongpittaya, K., McClements, D.J., Decker, E.A., (2014). Increased antioxidant efficacy of tocopherols by surfactant solubilization in oil in-water emulsions. J Agric Food Chem., 62, 10561-10566.