ارزیابی ارزش غذایی و ویژگی‌های فیتوشیمیایی گیاه اسفناج (Spinacia oleraceae L.) در رویشگاه‌های مختلف استان خوزستان

نوع مقاله : پژوهشی اصیل

نویسندگان
1 دانشجوی کارشناسی ارشد گروه شیمی، گروه شیمی، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران
2 دانشیار گروه شیمی، دانشکده علوم، دانشگاه شهید چمران اهواز، اهواز، ایران
3 4. دانشیار گروه علوم گیاهی، زیست سلولی و مولکولی، دانشکده علوم طبیعی، دانشگاه تبریز، تبریز، ایران 5. پژوهشکده کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، کرج، ایران
10.48311/fsct.2025.83969.0
چکیده
این مطالعه به بررسی میزان رنگدانه‌های فتوسنتزی و ترکیبات شیمیایی نمونه‌های اسفناج جمع‌آوری‌شده از رویشگاه‌های مختلف استان خوزستان پرداخته است. نتایج نشان داد که مقادیر کلروفیل‌ها و سایر رنگدانه‌ها در این نمونه‌ها تفاوت‌های معناداری داشته است. بیشترین میزان کلروفیل a در حمیدیه و شادگان مشاهده شد، در حالی‌که بیشترین میزان کلروفیل b در حمیدیه دیده شد. در بررسی ترکیبات شیمیایی، بیشترین میزان کربوهیدرات در حمیدیه و کمترین در رامهرمز بود. میزان پروتئین کل در شادگان کمترین مقدار را داشت. همچنین، مقادیر ویتامین‌ها و عناصر معدنی مختلف نیز در نمونه‌ها تفاوت‌های معناداری را نشان داد. بیشترین ویتامین C در آبادان، ویتامین E در دزفول و حمیدیه، ویتامین B12 در رامهرمز و شوش، و اسیدفولیک در رامهرمز مشاهده گردید. در بررسی عناصر معدنی، بیشترین میزان کلسیم در دزفول، مس در شوش، آهن در دزفول، و منیزیم در رامهرمز بود. علاوه بر این، مقادیر فلزات سنگین شامل روی، سزیم و سرب در نمونه‌های مختلف تفاوت معناداری داشتند. همچنین، ظرفیت آنتی‌اکسیدانی اسفناج جمع‌آوری‌شده از شادگان کمترین مقدار را داشت، و هدایت الکتریکی اسفناج رامهرمز بیشترین مقدار را نشان داد. نتایج این مطالعه نشان‌دهنده تفاوت‌های معنادار در ترکیبات شیمیایی و ویژگی‌های فیزیکی اسفناج جمع‌آوری‌شده از رویشگاه‌های مختلف استان خوزستان است. این تفاوت‌ها می‌تواند ناشی از عوامل محیطی مانند خاک، دما، رطوبت و شرایط جغرافیایی مختلف باشد که بر رشد و ترکیبات اسفناج تأثیر می‌گذارند. این اطلاعات می‌تواند به بهبود درک ما از تأثیر محیط بر کیفیت مواد غذایی و بهینه‌سازی شرایط کشت در مناطق مختلف کمک کند.

 
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of Nutritional Value and Phytochemical Properties of Spinach (Spinacia oleraceae L.) in Different Habitats of Khuzestan Province

نویسندگان English

Elnaz Jafari 1
Maryam Kolahi 2
Roya Azadi 2
Elham Mohajel Kazemi 3
1 MSe of Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2 Associate professor of Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 4. Associate Professor of the Department of Plant, Cell and Molecular biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran 5. 3Nuclear Agriculture School, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Org
چکیده English

This study investigated the photosynthetic pigments and chemical compositions in spinach samples collected from across Khuzestan province. The results revealed significant differences in the levels of chlorophylls and other pigments. The highest amount of chlorophyll a was found in Hamidieh and Shadegan, while the lowest levels were measured in Abadan, Dezful, and Ramhormoz. Similarly, the highest chlorophyll b content was observed in Hamidieh, with the lowest amounts recorded in Ramhormoz, Abadan, and Dezful. Carotenoid analysis showed that the lowest concentration was in Hamidieh, while the highest levels were found in other habitats. In terms of anthocyanins, the highest levels were seen in Ramhormoz, while the lowest were in Abadan and Dezful. Regarding chemical compositions, the highest carbohydrate content was found in Hamidieh and the lowest in Ramhormoz. The total protein content was lowest in Shadegan. Additionally, significant differences were observed in the levels of various vitamins and mineral elements. Vitamin C levels were highest in Abadan, vitamin E in Dezful and Hamidieh, vitamin B12 in Ramhormoz and Shush, and folic acid in Ramhormoz. As for mineral elements, the highest calcium levels were observed in Dezful, copper in Shush, iron in Dezful, and magnesium in Ramhormoz. Furthermore, levels of heavy metals such as zinc, cesium, and lead varied significantly across the samples. The antioxidant capacity of spinach from Shadegan was the lowest, while the electrical conductivity of spinach from Ramhormoz was the highest. These findings highlight substantial differences in the chemical compositions and physical properties of spinach from different habitats in Khuzestan. These variations may be attributed to environmental factors such as soil composition, temperature, humidity, and geographical conditions, all of which influence spinach growth and composition. This study provides valuable insights into the impact of environmental conditions on food quality and can help optimize cultivation practices in different regions.

 

کلیدواژه‌ها English

Spinach
Nutritional value
Environmental factors
Heavy metals
Phytochemicals
[1]     Assadi M. Flora of Iran. Iran Nat. 2019 May 22;4(2):29–41. (In Persian).
[2]     Tabatabaei M. Applied botany for agriculture and natural resources. Tehran Univ Publ. 1986;1184.
[3]     FAO STAT.Global agro-ecological assessment for agriculture in 21st century. 2018;
[4]     F E, M.r H, Mohsen B, Ali J. Determination and Comparison of Chemical Properties of Seven Iranian Spinach Cultivars. 2006 Jan 1;3(2):27–34. (In Persian).
[5]     Rubatzky VE, Yamaguchi M. World vegetables principles, production, and nutritive values. Fruits. 1997;5(51):381.
[6]     Prior RL. Spinach as a source of antioxidant phytochemical with potential health effects. . , . J Am Soc Hortic Sci. 2003;3–4.
[7]     Mousavi Shalmani MA, Khorasani A, Pirvali Beiranvand J, Naserian B. Use of isotopic tracer technique to evaluate fertilizer and water use efficiency and yield of lettuce under different irrigation systems. ResearchGate. 2009;9(2):97–112. (In Persian).
[8]     Lester GE, Makus DJ, Hodges DM, Jifon JL. Summer (Subarctic) versus Winter (Subtropic) Production Affects Spinach ( Spinacia oleracea L.) Leaf Bionutrients: Vitamins (C, E, Folate, K1 , provitamin A), Lutein, Phenolics, and Antioxidants. J Agric Food Chem. 2013 Jul 24;61(29):7019–27.
[9]     Singh V, Pande PC. A text book of botany Angiosperms [Internet]. Rastogi Publications; 2014 [cited 2025 Jan 11]. Available from: http://macl-ustm.digitallibrary.co.in/handle/123456789/5766
[10]  Salunkhe DK, Kadam SS. Handbook of vegetable science and technology: production, compostion, storage, and processing [Internet]. CRC press; 1998 [cited 2025 Jan 11]. 11.   Lichtenthaler HK, Wellburn AR. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents [Internet]. Portland Press Ltd.; 1983 [cited 2025 Jan 11]. 12.               Cartea ME, Francisco M, Soengas P, Velasco P. Phenolic compounds in Brassica vegetables. Molecules. 2010;16(1):251–80.
[11]  Liu D, Wong PTS, Dutka BJ. Determination of carbohydrate in lake sediment by a modified phenol-sulfuric acid method. Water Res. 1973;7(5):741–6.
[12]  Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.
[13]  Slinkard K, Singleton VL. Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic. 1977;28(1):49–55.
[14]  Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colometric methods. J Food Drug Anal. 2002;10(3):3.
[15]  Kumaran A, Joel Karunakaran R. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India - ScienceDirect. LWT. 40(2):344–52.
[16]  Hernández Y, Lobo MG, González M. Determination of vitamin C in tropical fruits: A comparative evaluation of methods. Food Chem. 2006;96(4):654–64.
[17]  Aguilar Urbano M, Pineda Priego M, Prieto P. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E1. 2013 [cited 2025 Jan 11]; Available from: https://helvia.uco.es/handle/10396/10963
[18]  Kumudha A, Sarada R. Effect of different extraction methods on vitamin B12 from blue green algae, Spirulina platensis. Pharm Anal Acta. 2015;6(337):10–4172.
[19]  Xiang N, Hu J, Wen T, Brennan MA, Brennan. Effects of temperature stress on the accumulation of ascorbic acid and folates in sweet corn (Zea mays L.) seedlings. J Sci Food Agric. 2020;100(2):1694–701.
[20]  Dániel P, Kovács B, Prokisch J, Gyõri Z. Heavy metal dispersion detected in soils and plants alongside roads in Hungary. Chem Speciat Bioavailab. 1997 Jan;9(3):83–93.
[21]  Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26(9–10):1231–7.
[22]  Lin J, Wang Y, Qi M, Li X, Yang C, Wang Y, et al. Optimum harvest maturity for Leymus chinensis seed. Biol Open. 2016;5(6):720–5.
[23]  Maldonado-Peralta MA, De Los Santos GG, García-Nava JR, Ramírez-Herrera C, Hernández-Livera A, Valdez-Carrazco JM, et al. Seed viability and vigour of two nanche species (Malpighia mexicana and Byrsonima crassifolia). Seed Sci Technol. 2016;44(1):168–76.
[24]  Effects of Rootstocks on Some Growth Parameters, Phosphorous and Nitrogen Uptake Watermelon under Salt Stress:  Vol 32, No 4. J Plant Nutr. 2009;32(4):629–43.
[25]  Kalinova J, Vrchotova N. The influence of organic and conventional crop management, variety and year on the yield and flavonoid level in common buckwheat groats. Food Chem. 2011;127(2):602–8.
[26]  Norouzi V, Yousefzadeh S, Asilan KA, Mansourifar S. Investigation of Changes in Essential Oil, Chlorophyll, Carotenoids, Anthocyanins, and Flavonoids of Mentha longifolia (L.) Huds. subsp. longifolia in Different Habitats of Marand , 5(1): . Q J Ecophytochemistry Med Plants. 2017;5(1):52–66. (In Persian).
[27]  Yousefzadeh S. Investigating the variation of essential oil content and composition of Moldavian balm in several areas of East and West Azerbaijan provinces. J Crop Prod. 2017 May 22;10(1):21–37.
[28]  Saeidi K, Sefidkon F, Babaei A. Determination of carotenoids and lycopene content of dog-rose (Rosa canina L.) fruit in different regions of Iran. Iran J Med Aromat Plants Res. 2014;30(5):833–42.
[29]  Nasiri Bezenjani S, Razavizadeh R, Oloumi H. Investigation of Phenylpropanoid Compounds in Latex and Chemical Composition of Essential Oil of Ferula assa-foetida L. in Some Natural Habitats of Kerman Province. 30(3): 674-687. J Plant Res Iran J Biol. 2017;30(3):674–87. (In Persian).
[30]  Akula R, Ravishankar GA. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav. 2011 Nov;6(11):1720–31.
[31]  Monschein M, Jaindl K, Buzimkić S, Bucar F. Content of phenolic compounds in wild populations of Epilobium angustifolium growing at different altitudes. Pharm Biol. 2015 Nov 2;53(11):1576–82.
[32]  Tóth BH, Blazics B, Kéry Á. Polyphenol composition and antioxidant capacity of Epilobium species. J Pharm Biomed Anal. 2009;49(1):26–31.
[33]  Mohammadi Bazargani M. Comparative analyses of phytochemical compounds of Epilobium minutiflorum (Onagraceae) at different altitudest altitudes. nbr. 2018;5(4):466–78.(In Persian).
[34]  Jahanbazi Goujani H, Nasr SMH, Saqeb Talebi K, Hojjati SM. Effect of Salinity Stress on Growth Factors, Proline, Plant Pigments, and Element Uptake in the Aerial Parts of Four Wild Almond Species. 27(5). J Plant Res Iran J Biol. 2014;27(5). (In Persian).
[35]  Rajmane NN, Gaikwad DK. EFFECT OF NACL SALINITY ON SOME ASPECTS OF NITROGEN METABOLISM OF SIMAROUBA GLAUCA DC. SEEDLINGS. 2018
[36]  Zakaria Nejad N, Moradi H, Biparva P, Memariani Z. Effect of height and soil properties on some secondary metabolites of different organs of sweet violet (Viola odorata L.) in different natural habitats of Mazandaran province. J Plant Environ Physiol. 2022;17(67):111–25.
[37]  Valizadeh M, Bagheri AR, Valizadeh J, Mirjalili MH, Moshtaqi N. Phytochemical Investigation of the Medicinal and Multipurpose Plant Withania coagulans (Stocks) Dunal in Natural Habitats of Sistan and Baluchestan Province. 31(3): . Iran J Med Aromat Plants Res. 2015;31(3):406–17.(In Persian).
[38]  Dejampour J, Aliasgarzad N, Zeinalabedini M, Niya MR, Hervan EM. Evaluation of salt tolerance in almond [Prunus dulcis (L.) Batsch] rootstocks. Afr J Biotechnol. 2012;11(56):11907–12.
[39]  Hendawy SF. Comparative study of organic and mineral fertilization on Plantago arenaria plant. J Appl Sci Res. 2008;4(5):500–6.
[40]  Espehbodi K, Mirzaei Nedoushan H, Tabari M, Akbarinia M, Dehghan Shouraki Y, Tabari Kuchaksarai M, et al. Effect of Seed Source Elevation on Germination of Acer velutinum Seeds. Iran J Nat Resour. 2006;59(1):103–13. (In Persian).
[41]  Narimani R, Moghadam M, Shokoohi D. Investigation of Morphological Diversity, Phenol Content, and Antioxidant Activity of Different Populations of Nepeta nuda and Nepeta crassifolia in Habitats of Ardabil and East Azerbaijan Provinces. 2017, 5(3): 13-22. Ecophytochemistry Med Plants. 2017;5(3):13–22. (In Persian).
[42]  Hohtola A. Northern plants as a source of bioactive products. 2007;
[43]  Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environ Exp Bot. 2002;47(1):39–50.
[44]  Ashraf M, Harris PJ. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 2004;166(1):3–16.
[45]  Blum A. Plant breeding for water-limited environments [Internet]. Springer Science & Business Media; 2010
[46]  Flexas J, Bota J, Cifre J, Mariano Escalona J, Galmés J, Gulías J, et al. Understanding down‐regulation of photosynthesis under water stress: future prospects and searching for physiological tools for irrigation management. Ann Appl Biol. 2004 Jun;144(3):273–83.
[47]  Kirkham MB. Principles of soil and plant water relations [Internet]. Elsevier; 2023