[1] Mínguez, M. I., Rubiales, D. 2021. Chapter 15 - Faba bean, in: V.O. Sadras, D.F. Calderini (Eds.) Crop Physiology Case Histories for Major Crops, Academic Press, pp. 452-481.
[2] Singh, A. K., Bharati, R., Manibhushan, N. C., Pedpati, A. 2013. An assessment of faba bean (Vicia faba L.) current status and future prospect, African Journal of Agricultural Research. 8, 6634-6641.
[3] Dhull, S. B., Kidwai, M. K., Noor, R., Chawla, P., Rose, P. K. 2022. A review of nutritional profile and processing of faba bean (Vicia faba L.), Legume Science. 4, e129.
[4] Johnson, J. B., Collins, T., Skylas, D., Quail, K., Blanchard, C., Naiker, M. 2020. Profiling the varietal antioxidative contents and macrochemical composition in Australian faba beans (Vicia faba L.), Legume Science. 2, e28.
[5] Salehi, F., Amiri, M., Ghazvineh, S. 2024. Effect of ultrasonic pretreatment on textural properties and sensory attributes of cooked faba beans, Ultrasonics Sonochemistry. 110, 107040.
[6] Salehi, F. 2023. Recent progress and application of freeze dryers for agricultural product drying, ChemBioEng Reviews. 10, 618-627.
[7] Khodadadi, M., Rahmati, M. H., Alizadeh, M. R., Rezaei Asl, A. 2017. Investigating the effect of air temperature and paddy final moisture on the crack percent and conversion coefficient of Iranian rice varieties in fluidized bed dryer, Journal of Food Science and Technology (Iran). 13, 81-91.
[8] Liang, X., Xu, Z., Li, X., Kong, B., Xia, X., Zhang, Y., Liu, Q., Shen, L. 2023. Effect of microwave drying on the brittleness quality of pork chip snacks: Perspectives on drying kinetics and microstructural traits, LWT. 185, 115147.
[9] Khodadadi, M., Masoumi, A., Sadeghi, M. 2024. Drying, a practical technology for reduction of poultry litter (environmental) pollution: methods and their effects on important parameters, Poultry Science. 103, 104277.
[10] Salehi, F., Goharpour, K., Razavi Kamran, H. 2024. Effects of different pretreatment techniques on the color indexes, drying characteristics and rehydration ratio of eggplant slices, Results in Engineering. 21, 101690.
[11] Ozcelik, M. M., Aydin, S., Aydin, E., Ozkan, G. 2024. Preserving nutrient content in red cabbage juice powder via foam-mat hybrid microwave drying: Application in fortified functional pancakes, Food Science & Nutrition. 12, 1340-1355.
[12] Dil, E. A., Ghaedi, M., Asfaram, A., Mehrabi, F., Bazrafshan, A. A., Ghaedi, A. M. 2016. Trace determination of safranin O dye using ultrasound assisted dispersive solid-phase micro extraction: Artificial neural network-genetic algorithm and response surface methodology, Ultrasonics Sonochemistry. 33, 129-140.
[13] Salehi, F. 2020. Recent advances in the modeling and predicting quality parameters of fruits and vegetables during postharvest storage: A review, International Journal of Fruit Science. 20, 506-520.
[14] Taheri-Garavand, A., Meda, V., Naderloo, L. 2018. Artificial neural network-genetic algorithm modeling for moisture content prediction of savory leaves drying process in different drying conditions, Engineering in Agriculture, Environment and Food. 11, 232-238.
[15] Shao, Z., Song, Y., Hong, Y., Tao, S., Sun, J., Liu, C., Wu, Z., Cao, L. 2023. The extension of vacuum microwave drying time improved the physicochemical properties, in vitro digestibility and antioxidant activity of brown rice flour, LWT. 184, 115023.
[16] Chen, X., Liu, Y., Xu, Z., Zhang, C., Liu, X., Sui, Z., Corke, H. 2021. Microwave irradiation alters the rheological properties and molecular structure of hull-less barley starch, Food Hydrocolloids. 120, 106821.
[17] Azimi-Nejadian, H., Hoseini, S. S. 2019. Study the effect of microwave power and slices thickness on drying characteristics of potato, Heat and Mass Transfer. 55, 2921-2930.
[18] Salehi, F., Satorabi, M. 2021. Influence of infrared drying on drying kinetics of apple slices coated with basil seed and xanthan gums, International Journal of Fruit Science. 21, 519-527.
[19] Salehi, F., Razavi Kamran, H., Goharpour, K. 2023. Effects of ultrasound time, xanthan gum, and sucrose levels on the osmosis dehydration and appearance characteristics of grapefruit slices: process optimization using response surface methodology, Ultrasonics Sonochemistry. 98, 106505.
[20] Maleki, A., Ahmadi Chenarbon , H., Movahhed, S. 2018. Investigation of effective parameters in drying process using hot air on some qualitative properties of common bean, Journal of Food Science and Technology (Iran). 15, 39-56.
[21] Hesarinejad, M. A., Amiryousefi, M. R. 2021. Modeling of kinetic changes of ostrich meat color during deep fat frying by image processing, Journal of Food Science and Technology (Iran). 18, 361-369.
[22] Rezaiyan Attar, F., Sedaghat, N., Pasban, A., Yeganehzad, S., Hesarinejad, M. A. 2022. Modeling the respiration rate of chitosan coated fresh in-hull pistachios (Pistacia vera L. cv. Badami) for modified atmosphere packaging design, Journal of Food Measurement and Characterization. 16, 1049-1061.
[23] Kusuma, H. S., Lantip, G. I. A., Mutiara, X., Iqbal, M. 2023. Evaluation of mini bibliometric analysis, moisture ratio, drying kinetics, and effective moisture diffusivity in the drying process of clove leaves using microwave-assisted drying, Applied Food Research. 3, 100304.
[24] Hashemi, S. J., Ranjbar Nedamani, A., Abdi, N. 2022. Changes in effective moisture diffusivity and activation energy during the drying of apple fruit (yellow delicious) with microwave and oven, Journal of Food Science and Technology (Iran). 19, 281-289.
[25] Li, G., Li, L., Liu, W., Cao, W., Chen, J., Ren, G., Law, C. L., Duan, X. 2024. Effects of multiphase microwave drying on the microstructure of Chinese yam: A study based on X-ray micro-computed tomography technology, LWT. 203, 116327.
[26] Parvaneh, A., Taheri-Garavand, A., Shahbazi, F. 2023. Evaluation of chicken meat freshness using olfaction machine and artificial neural networks, Innovative Food Technologies. 10, 319-333.
[27] Maftoonazad, N., Jokar, A., Zare, M. 2023. Prediction of mass transfer during osmotic dehydration of black fig fruits (Ficus carica) in ternary systems: comparison of response surface methodology and artificial neural network, Innovative Food Technologies. 11, 61-75.
[28] Kalathingal, M. S. H., Basak, S., Mitra, J. 2020. Artificial neural network modeling and genetic algorithm optimization of process parameters in fluidized bed drying of green tea leaves, Journal of Food Process Engineering. 43, e13128.