ارزیابی خواص پپتیدهای حاصل از هیدرولیز آنزیمی جوانه شبدر و بررسی ویژگیهای نانولیپوزوم های حامل آنها

نویسندگان
1) گروه علوم و صنایع غذایی، واحد آیت ا... آملی، دانشگاه آزاد اسلامی،آمل، ایران
چکیده
هیدرولیز آنزیمی یکی از روش­های مورد استفاده برای بهبود ویژگی­های کاربردی و تغذیه­ای پروتئین­های غذایی است. با توجه به تأثیری که پروتئین­های هیدرولیز شده بر خواص عملکردی و سلامت بخشی مواد غذایی دارند، در این پژوهش با استفاده از آنزیم­های پروتامکس و برومالین پروتئین به دست آمده از جوانه شبدر هیدرولیز و تأثیر این فرایند بر خواص آنتی اکسیدانی (مهارکنندگی رادیکال­های آزاد DPPH و ABTS) و ویژگی­های عملکردی (حلالیت، کف کنندگی و امولسیون) آن­ها بررسی شد. سپس پروتئین هیدرولیز شده توسط نانولیپوزوم ریز پوشانی و ویژگی­های آن بررسی شد. با توجه به نتایج، مجموع اسیدهای آمینه آبگریز و آروماتیک برای آنزیم پروتامکس و برومالین به ترتیب 41/40 و 91/37، 35/12 و 46/11 بوده است. همچنین از میان آنزیم­ها، آنزیم پروتامکس توانست پروتئین هیدرولیزی با درجه هیدرولیزاسیون، محتوای پروتئینی، خاصیت آنتی اکسیدانی و عملکردی بالاتری تولید کند و افزایش زمان هیدرولیز تاثیر مثبتی بر روی ویژگی­های مذکور داشت. بنابر این پروتئین هیدرولیز شده توسط آنزیم پروتامکس و زمان 60 دقیقه توسط نانولیپوزوم ریز پوشانی شد، نتایج مربوط به اندازه ذرات های حامل پپتیدها برابر با 37/3±64/93 نانومتر، پتانسیل زتا برابر با 38/1±42/8- میلی­ولت و راندمان ریزپوشانی برابر با 37/2±73/68 درصد بوده است. نتایج تحقیق حاضر نشان داد استفاده از نانو پروتئین، می­تواند رویکردی مفید در جهت کاربرد مستقیم پپتیدهای جوانه شبدر با قابلیت آنتی اکسیدانی در فراورده­های غذایی باشد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluating the properties of peptides obtained from the enzymatic hydrolysis of clover sprouts and investigating the characteristics of nanoliposomes carrying them

نویسندگان English

Simin Rashidi
peiman ariaii
Mahro Esmaeili
Roya Bagheri
1) Department of Food Science and Technology, Ayatolla Amoli Branch, Islamic Azad University, Amol, Iran
چکیده English

Enzymatic hydrolysis is one of the methods used to improve the functional and nutritional properties of food proteins. Considering the effect that hydrolyzed proteins have on the functional and health-giving properties of food, in this research, using Protamax and Bromelain enzymes, the protein obtained from the clover sprout was hydrolyzed and the effect of this process on the antioxidant properties (inhibition DPPH and ABTS free radicals activities) and their functional characteristics (solubility, foaming and emulsification) were investigated. Then the hydrolyzed protein was micro-encapsulated by nanoliposome and its characteristics were analyzed. According to the results, the sum of hydrophobic and aromatic amino acids for Protamax and Bromelain enzymes were 40.41, 37.91, 12.35 and 11.46, respectively. Also, among the enzymes, Protamax enzyme was able to produce hydrolyzable protein with a higher degree of hydrolysis, protein content, antioxidant properties and higher functional properties, and also increasing the hydrolysis time had a positive effect on the aforementioned characteristics. Therefore, the protein hydrolyzed by Protamax enzyme and time 60 minutes was covered by nanoliposome, the results related to the size of the particles carrying peptides equal to 93.64±3.37 nm, zeta potential equal to 42.1±1.38 8-mV and microcoating efficiency was 68.73±2.37%. The results of the present research showed nano protein can be a useful approach for direct application of clover sprout peptides with antioxidant capacity in food products.

کلیدواژه‌ها English

Hydrolyzed protein
clover sprout
Antioxidant properties
Functional properties
Nanoliposome
[1] Rabiei S, Rezaei M, Nikoo M, Khezri M, Rafieian-Kopai M, Anjomshoaa M. 2022. Antioxidant properties of Klunzinger’s mullet (Liza klunzingeri) protein hydrolysates prepared with enzymatic hydrolysis using a commercial protease and microbial hydrolysis with Bacillus licheniformis. Food Science and Technology International. 28 (3): 233-246.
[2] Shahosseini, S.R., Javadian, S.R. & Safari, R. 2022. Effects of Molecular Weights -Assisted Enzymatic Hydrolysis on Antioxidant and Anticancer Activities of Liza abu Muscle Protein Hydrolysates. International Journal for Peptide Research & Therapeutics. 28, 72.
[3] Behfar S, Tababeiyazdi F, Alizade A, Kaviani M, Irajifar M. 2013. Effect of grape seed extract polyphenols on growth of bacteria. 21st Iranian Food Science and Technology Congress.
[4] Varedesara MS, Ariaii P, Hesari J. 2021. The effect of grape seed protein hydrolysate on the properties of stirred yogurt and viability of Lactobacillus casei in it. Food Science and Nutrition. 9:2180–2190.
[5] Mirsadeghi Darabi, D., Ariaii, P., Safari, R., Ahmadi, M. 2022. Effect of clover sprouts protein hydrolysates as an egg substitute on physicochemical and sensory properties of mayonnaise. Food Science & Nutrition. 10: 253–263.
[6] Ates E. 2011. Influence of some hard seedednessbreaking treatments on germination in Persian clover (Trifolium resupanatum ssp. typicum Fiori Et Paol.) seeds. Rom. Agric. Res. 28: 229-236.
[7] Zhu, K.X, Zhou, H.M., and Qian, H. 2006. Antioxidant and free radicalscavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochemisrty. 41: 1296–1302.
[8] Hassan, H.M.M., Afify, A.S., Basyiony, A.E., Ahmed, A.E., and Ghada, T. 2010. Nutritional and functional properties of defatted wheat protein isolates. Australian Journal of Basic and Applied Sciences. 4(2): 348–358.
[9] Gomez, M., Gonzalez, J., Oliete, B. 2012. Effect of extruded wheat germ on dough rheology and bread quality. Food Bioprocess Technology, 5(6): 2409-2418.
[10] Sheng L, Olsen SA, Hu J, Yue W, Means WJ, Zhu MJ. 2016, Inhibitory effects of grape seed extract on growth, quorum sensing, and virulence factors of CDC “top-six” non-O157 Shiga toxin producing E. coli, International Journal of Food Microbiology, 229:24-32.
[11] Javadian, S. R., Shahoseini, S. R. Ariaii, P. 2016. The effects of liposomal encapsulated thyme extract on the quality of fish mince and Escherichia coli O157: H7 inhibition during refrigerated storage. Journal of Aquatic Food Product Technology. 26 (1): 115-123.
[12] Moghadam, R.M., Ariaii, P. Ahmady, M. 2022. The effect of microencapsulated extract of pennyroyal (Mentha pulegium. L) on the physicochemical, sensory, and viability of probiotic bacteria in yogurt. Food Measure. 15: 2625–2636.
[13] Wen, P., Zhu, D. H., Wu, H., Zong, M. H., Jing, Y. R., Han, S. Y. 2016. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control. 59: 366-376.
[14] Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S., Pandey, P., Bannerjee, S. K. 2012. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2(1): 2–11.
[15] Tometri, S.S., Ahmady, M., Ariaii, P. et al.2020. Extraction and encapsulation of Laurus nobilis leaf extract with nano-liposome and its effect on oxidative, microbial, bacterial and sensory properties of minced beef. Food Measure. 14: 3333–3344.
[16] Makri, E. A., Papalamprou, E. M., Doxastakis, G. I. 2006. Textural properties of legume protein isolate and polysaccharide gels. Journal of the Science of Food and Agriculture. 86(12): 1855-1862.
[17] Dorvaj Z., Javadian S.R., Oveissipour M, Nemati. M. 2013.. Use of Protein Hydrolysates From Caspian Sea Sprat (Clupeonella Cultiventris) As A Nitrogen Source For Bacteria Growth Media (Vibrio Anguillarum, Bacillus Licheniformis, Bacillus Subtilis). Journal of Aquatic animals & Fisheries. 4(15): 11-18.
[18] Nemati, M., Javadian, S. R., Ovissipour, M. Keshavarz, M. 2012. A study on the properties of alosa (Alosa caspia) by-products protein hydrolysates using commercial enzymes. World Applied Sciences Journal. 18 (7): 950-956.
[19] Kristinsson HG, Rasco BA. Fish protein hydrolysates: Production, biochemical and functional properties. Crit Rev Food Sci Nutr. 2000;40(1):43‐81.
[20] Bougatef, A., Hajji, M., Balti, R., Lassoued, I., Triki-Ellouz, Y. Nasri, M. 2009. Antioxidant & free radical-scavenging activities of smooth hound (Mustelus mustelus) muscle protein hydrolysates obtained by gastrointestinal proteases. Food Chemistry. 114: 1198-1205.
[21] Alemán A, Pérez‐Santín E, Bordenave‐Juchereau S, Arnaudin I, Gómez‐Guillén MC, Montero P. 2011. Squid gelatin hydrolysates with antihypertensive, anticancer and antioxidant activity. Food Res Int. 44:1044‐51.
[22] Bera, M.B. Mukherjee, R.K. 1989. Solubility, emulsifying, and foaming properties of rice bran protein concentrates. J. Food Sci., 54(1), 142-145.
[23] Slizyte, R., Mozuraitytė, R., Martínez-Alvarez, O., Falch, E., Fouchereau-Peron, M., Rustad, T. 2009. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (gadus morhua) Backbones. Process Biochemistry. 44:668-677.
[24] Shahidi, F. Onodenalore, A. 1995. Water dispersions of Myofibrillar Proteins from Capelin (Mallotus villosus). Food Chemistry. 53: 51-54.
[25] Liu W L, Ye A, Liu CM, Liu W, Singh H. 2012. Structure and integrity of liposomes prepared from milk or soybeanderived phospholipids during in vitro digestion. Food Res Internat,48(2), 499–506.
[26] Liu W, Ye A, Liu W, Liu C, Han J, Singh H, 2015. Behavior of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chem.175: 16-24.
[27] Ghanbarinia. SH, Ariaii. P, Safari. R, Najafian. L. 2022. The effect of hydrolyzed sesame meal protein on the quality and shelf life of hamburgers during refrigerated storage. Animal science journal. 93: 1, e13729.
[28] Chalamaiah, M., Dinesh Kumar, B., Hemalatha, R. and Jyothirmayi, T., 2012. Fish protein hydrolysates: Proximate composition, amino acid composition, antioxidant activities and applications: A review. Food Chemistry, 135: 3020–3038.
[29] Ovissipour, M. Rasco, B. Shiroodi, S.G.; Modanlow, M. Gholami, S. Nemati, M. 2013. Antioxidant activity of protein hydrolysates from whole anchovy sprat (Clupeonella engrauliformis) prepared using endogenous enzymes and commercial proteases. Journal of the Science of Food and Agriculture. 93: 1718–1726.
[30] Pezeshk, S., Ojagh, S., Rezaei, M., Shabanpour, B. 2017. Antioxidant and Antibacterial Effect of Protein Hydrolysis of Yellowfin Tuna Waste on Flesh Quality Parameters of Minced Silver Carp. Journal of Genetic Resources. 3(2): 103-112.
[31] FAO/WHO. 1990. Energy and protein requirements. Report of joint FAO/ WHO/UNU Expert Consultation Technical Report. FAO/WHO and United Nations University, Geneva, Series No. 724.
[32] Gao, D., Chang, T., Li, H., and Cao, Y. 2010. Angiotensin I-converting enzyme inhibitor derived from cottonseed protein hydrolysate. African Journal of biotechnology, 9: 8977-8983.
[33] Yathisha, U.G., Vaidya. S. Bangera Sheshappa. M 2022. Functional Properties of Protein Hydrolyzate from Ribbon Fish (Lepturacanthus Savala) as Prepared by Enzymatic hydrolysis, International Journal of Food Properties. 25 (1): 187-203.
[34] Mahdabi, M., Shamsaie Mehrgan, M., Rajabi Islami, H. A2022. Comparison of the proximate compositions and amino acids profiles of protein hydrolysates produced from fishmeal effluents (stickwater), fishmeal and muscle of Anchovy sprat. Iranian Scientific Fisheries Journal. 30(6): 43-61.
[35] Purwin C., Fijałkowska M., Lipiński K., Wierzbowska J., Kobzhassarov T.Z., Michalski J. 2015. Changes in amino acid composition during ensiling lu- cerne and red clover in round bales. J. Elem. 20(4): 965-973.
[36] Mazloomi N, Sadeghi Mahoonak A, Ghorbani M, Houshmand G, Toldra F. 2020. Processing Optimization of Production of Hydrolyzed Protein from Orange Seed Waste with Pepsin Enzyme. Iranian J Nutr Sci Food Technol.15 (1): 35-48.
[37] Sun Q, Shen H, Leu Y. 2011. Antioxidant activity of hydrolysates and peptide fractions derived from porcine hemoglobin. J Food Sci and Technolog. 21:6646- 6652.
[38] Torruco-Uco J, Chel-Guerrero L, Martı´nez-Ayala A, Da´vila-Ortı´z G, Betancur-Ancona D. 2009 Angiotensin converting enzyme inhibitory and antioxidant activities of protein. LWT - Food Sci Technol. 42:1597- 1604.
[39] Nalinanon S, Benjakul S, Kishimura H, Shahidi F. Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna. Food Chem. 011;124(4):1354‐62.
[40] Vogelsang-O’Dwyer, M.; Sahin, A.W.; Arendt, E.K.; Zannini, E. Enzymatic Hydrolysis of Pulse Proteins as a Tool to Improve Techno-Functional Properties. Foods 2022, 11, 1307.
[41] Fan, Y.; Yu, Z.; Zhao, W.; Ding, L.; Zheng, F.; Li, J.; Liu, J. 2020. Identification and Molecular Mechanism of Angiotensin-converting Enzyme Inhibitory Peptides from Larimichthys Crocea Titin. Food Sci. Hum. Wellness. 9, 257–263.
[42] Gumus, C.E.; Decker, E.A.; McClements, D.J. 2017. Formation and Stability of ω-3 Oil Emulsion-Based Delivery Systems Using Plant Proteins as Emulsifiers: Lentil, Pea, and Faba Bean Proteins. Food Biophys. 12, 186–197.
[43] Ghelich, S., Ariaii, P. Ahmadi, M. 2022. Evaluation of Functional Properties of Wheat Germ Protein Hydrolysates and Its Effect on Physicochemical Properties of Frozen Yogurt. Int J Pept Res Ther. 28: 69.
[44] Chen L, Chen J, Ren J, Zhao M. 2011. Modifications of soy protein isolates using combined extrusion pre-treatment and controlled enzymatic hydrolysis for improved emulsifying properties. Food Hydrocoll. 25(5):887– 97.
[45] Jamdar SN, Rajalakshmi V, Pednekar MD, Juan F, Yardi V, Sharma A. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem. 2010; 121(1):178–84.
[46] Reyhani Poul, S., Yeganeh, S. Physicochemical and antioxidant properties of chitosan-coated nanoliposome loaded with bioactive peptides produced from shrimp wastes hydrolysis. Iranian Journal of Fisheries Sciences, 2022; 21(4): 987-1003.
[47] Hasani, S., shahidi, M., Ojagh, S. M. The Production and Evaluation of Nanoliposomes Containing Bioactive Peptides Derived from Fish Wastes Using the Alkalase Enzyme. Research and Innovation in Food Science and Technology, 2019; 8(1): 31-44.
[48] Da Silva, I.M., Boelter, J.F., Da Silveira, N.P., Brandelli, A. 2014. Phosphatidylcholine nanovesicles coated with chitosan or chondroitin sulfate as novel devices for bacteriocin delivery. Journal of Nanoparticle Research. 16: 2479.
[49] Hosseini, S.F., Ramezanzade, L., Nikkhah, M. 2017. Nano-liposomal entrapment of bioactive peptidic fraction from fish gelatin hydrolysate. International Journal of Biological Macromolecules. 105(2): 1455-1463.
[50] Mozafari, M.R., Flanagan, J., Matia-Merino, L., Awati, A., Omri, A., Suntres, Z.E., & Singh, H. 2006. Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. Journal of the Science of Food and Agriculture. 86(13) :2038-2045.