بررسی ویژگی های فیزیکی فیلم پلی لاکتیک اسید نشانگر شده با آنتوسیانین های استخراج شده از کلم قرمز و چغندر لبویی

نویسندگان
1 دانشگاه آزاد اسلامی واحد تهران شمال
2 استادیار، گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران3 استادیار، گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی، واحد شهرکرد، شهرکرد، ایران
3 استاد تمام، گروه علوم و صنایع غذایی، دانشگاه تربیت مدرس، تهران، ایران
4 دانشیار، گروه علوم و صنایع غذایی، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران
5 استاد، پژوهشگاه پلیمر و پتروشیمی ایران، تهران، ایران
چکیده


در تحقیق حاضر ویژگی­های فیلم نشانگر پلی لاکتیک اسید و آنتوسیانین ­های استخراج شده از کلم قرمز و چغندر لبویی مورد بررسی قرار گرفت به طوری که نمونه­ های فیلم 1 (پلی لاکتیک اسید فاقد آنتوسیانین)، 2 (پلی لاکتیک اسید حاوی آنتوسیانین کلم قرمز)، 3 (پلی لاکتیک اسید حاوی آنتوسیانین چغندر لبویی) و 4 (پلی لاکتیک اسید حاوی آنتوسیانین چغندر لبویی و کلم قرمز) تهیه شدند و آزمون هایضخامت، حلالیت، خواص مکانیکی (میزان کشش پذیری، مقاومت به کشش، مدول الاستیک) و تغییرات مولفه های رنگیبر روی آنها صورت پذیرفت. نتایج نشان داد که اختلاف آماری معنی داری در ضخامت نمونه­های فیلم ملاحظه نشد(p≤0.05). بالاترین حلالیت متعلق به نمونه شاهد (فیلم 1) و پائین ترین میزان حلالیت متلعق به نمونه 4 بود.نتایج آزمون های مکانیکی نشان داد که بالاترین افزایش طول در شکست متعلق به نمونه های 3 و4 و پائین ترین افزایش طول در شکست متعلق به نمونه 1 بود (p≤0.05). همچنین پائین ترین مقاومت به کشش و مدول یانگ متعلق به نمونه 1 بود (p≤0.05). در تمامی نمونه­ های فیلم به جز نمونه 1، با افزایش pH (تاpH=14)،مولفه رنگیL*نمونه­ ها به طور معنی ­داری افزایش یافت (p≤0.05). همچنین در تمامی pHهای مورد بررسی، نمونه 1 دارای بالاترین مولفه رنگیL* و نمونه 3 دارای پائین ترین مولفه رنگیL* بود (p≤0.05). مولفه رنگیa* در نمونه 3، در pH=1-6، روند افزایشی و سپس تا pH=14 روند کاهشی داشت(p≤0.05). در نمونه­ های 2 و4 در pH=1-13، روند کاهشی و سپس تا pH=14 روند افزایشی ملاحظه شد(p≤0.05). در نمونه 3، تا pH=6، روند افزایشی و پس از آن تا pH=14 روند کاهشی ملاحظه شد(p≤0.05). در مولفه رنگی b‏* نمونه 2، ابتدا در pH=1-12، روند کاهشی و سپس تا pH=14 روند افزایشی ملاحظه شد (p≤0.05). مولفه رنگی b‏* نمونه­ 3 در pH=1-11، و در نمونه 4 در pH=1-12، روند کاهشی و مجدد برای هر دو نمونه تا pH=14 روند افزایشی نشان داد(p≤0.05). نمونه 4 به دلیل ویژگی های فیزیکی مناسب و تغییرات رنگی واضح تر در pH های مختلف به عنوان تیمار برتر معرفی شد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Physical properties investigation of polylactic acid marker film with anthocyanins extracted from red cabbage and beetroot

نویسندگان English

Leila Alizadeh 1
Nafiseh jahanbakhshian 2
Mohammad Hossein Azizi 3
Rezvan Mousavi nadushan 4
Morteza Ehsani 5
1 Islamic Azad University, North Tehran Branch, Tehran, Iran
2 Assistant Professor, Department of Food Science and Technology, Islamic Azad University, North Tehran Branch, Tehran, Iran Assistant Professor, Department of Food Science and Technology, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
3 Professor, Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
4 Associate Professor, Department of Food Science and Technology, Islamic Azad University, North Tehran Branch, Tehran, Iran
5 Professor, Iran Polymer and Petrochemical Research Institute, Tehran, Iran
چکیده English

In the present study, the properties of polylactic acid marker film combined with red cabbage and beet anthocyanins were investigated. There were four samples: 1 (polylactic acid without anthocyanins), 2 (polylactic acid containing red cabbage anthocyanins), 3 (polylactic acid containing beet anthocyanin) and 4 (polylactic acid containing beet anthocyanin and red cabbage). Thickness, solubility, mechanical properties and changes in color indices were analyzed. The results showed that there were no statistically significant differences in the thickness of the film samples (p> 0.05). The highest solubility belonged to the sample 1 and the minimum solubility was detected insample 4. The highest increase in elongation at break was seen in samples 3 and 4 and the lowest increase in elongation at break belonged to sample 1 (p≤0.05). In all the films except sample 1, by pH rise (up to pH = 14), L * factor increased significantly (p≤0.05). In all pH ranges, sample 1 had the highest L * and sample 3 had the lowest one (p≤0.05). a * indice in sample 3, at pH = 1-6, had an increasing trend and then decreased to pH = 14 (p≤0.05). In samples 2 and 4 at pH = 1-13, a decreasing trend was observed and then up to pH=14 an increasing trend was observed (p≤0.05). For b *in sample 2 there was a decline at pH = 1-12, then up to pH = 14, an increasing trend was detected (p≤0.05). The b * of sample 3 and 4 had a fall until pH=11 and 12 respectively following an increasing trend up to pH=14 (p≤0.05). The best sample was sample 4 due to suitable physical properties and clearer color changes at different pH.

کلیدواژه‌ها English

Smart film
Polylactic acid
Anthocyanin
Beetroot
Red cabbage
[1] Arruda, I. N. Q., Pereira Jr, V. A., & Stefani, R. (2015). Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as TimeeTemperature Indicators for application in intelligent food packaging. Food Hydrocolloids, 43(18), 0e188.
[2] Pacquit, A., Frisby, J., Diamond, D., Lau, K. T., Farrell, A., Quilty, B., & Diamond, D. (2007). Development of a smart packaging for the monitoring of fish spoilage. Food chemistry, 102(2), 466-470.
[3] Kalpana, S., Priyadarshini, S. R., Leena, M. M., Moses, J. A., & Anandharamakrishnan, C. (2019). Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology, 93, 145-157.
[4] Singh, B. P., Shukla, V., Lalawmpuii, H., & Kumar, S. (2018). Indicator sensors for monitoring meat quality: A. Journal of Pharmacognosy and Phytochemistry, 7(4), 809-812.
[5] Kerry J, Butler P (eds) (2008) Smart packaging technologies for fast moving consumer goods. Wiley, Colorado
[6] Pirsa, S., & Aghbolagh Sharifi, K. (2020). A review of the applications of bioproteins in the preparation of biodegradable films and polymers. Journal of Chemistry Letters, 1(2), 47-58.
[7] Tsuji, H. (2014). Poly (lactic acid). Bio-based plastics: materials and applications, 171-239.
[8] Chandrasekhar, J., Madhusudhan, M. C., & Raghavarao, K. S. M. S. (2012). Extraction of anthocyanins from red cabbage and purification using adsorption. Food and bioproducts processing, 90(4), 615-623.
[9] Pereira Jr, V. A., de Arruda, I. N. Q., & Stefani, R. (2015). Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for application in intelligent food packaging. Food Hydrocolloids, 43, 180-188.
[10] Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food chemistry, 113(4), 859-871.
[11] Zhang, J., Zou, X., Zhai, X., Huang, X., Jiang, C., & Holmes, M. (2019). Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food chemistry, 272, 306-312.
[12] Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., & Chen, A. (2020). Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. International Journal of Biological Macromolecules, 143, 359-372.
[13] Vo, T. V., Dang, T. H., & Chen, B. H. (2019). Synthesis of Intelligent pH Indicative Films from Chitosan/Poly (vinyl alcohol)/Anthocyanin Extracted from Red Cabbage. Polymers, 11(7), 1088.
[14] Chen, M., Yan, T., Huang, J., Zhou, Y., & Hu, Y. (2020). Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. International Journal of Biological Macromolecules, 179, 90-100.
[15] Alizadeh-Sani, M., Mohammadian, E., Rhim, J. W., & Jafari, S. M. (2020). pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends in Food Science & Technology, 105, 93-144.
[16]
[17] Rhim, J. W., Hong, S. I., & Ha, C. S. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Science and Technology, 42(2), 612-617.
[18] ASTM. 2000. E 96: Standard method for water vapor transmission of materials. In Annual Book of ASTM Standards (pp. 785–792). American Society for Testing and Materials.
[19] Maftoonazad, N., Ramaswamy, H. S., Moalemiyan, M., & Kushalappa, A. C. (2007). Effect of pectin-based edible emulsion coating on changes in quality of avocado exposed to Lasiodiplodia theobromae infection. Carbohydrate polymers, 68(2), 341-349.
[20] AOAC (2005) Official methods of analysis of AOAC International. AOAC international.
[21] Basiri, Sh., Shahidi, F., Kadkhodai, R., Farhoush, R., Investigation of the effect of ultrasonic waves on pre-processing extraction of oil from the spring, 2011, Science Quarterly, 115-122, p.
[22] Fernandes, F. A., Oliveira, F. I., & Rodrigues, S. (2008). Use of ultrasound for dehydration of papayas. Food and Bioprocess Technology, 1(4), 339-345.
[23] Mason, T. J., Paniwnyk, L., & Lorimer, J. P. (1996). The uses of ultrasound in food technology. Ultrasonics sonochemistry, 3(3), S253-S260.
[24] Shukla, V., Kandeepan, G., Vishnuraj, M. R., and Soni, A., 2016. Anthocyanins based indicator sensor for smart packaging application. Agric. Res. 5: 205-209. https://doi.org/10.1007/ s40003-016-0211-0
[25] Rouhani, R., and Ein Afshar, S., and Ahmadzadeh, R. (1394). Extraction of anthocyanin and antioxidant compounds of saffron flowers using ultrasound technology. Iranian Food Science and Technology Research, 11 (2), 161-170.
[26] Oancea S., Drághici O. (2013): pH and thermal stability of anthocyanin-based optimised extracts of Romanian red onion cultivars. Czech J. Food Sci., 31: 283-291.
[27] Pedramnia, A., and Sharifi, A., and Tavakolipour, H. (1389). Optimization of barberry anthocyanin extraction process in the presence of ultrasound. Innovation in Food Science and Technology (Food Science and Technology), 2 (1 (4 in a row)), 45-52.
[28] Chen, M.; Yan, T.; Huang, J.; Zhou, Y.; Hu, Y. Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. Int. J. Biol. Macromol. 2021, 179, 90–100.
[29] Erickson, Daniel P, Renzetti, Stefano, Jurgens, Albert, Campanella, Osvaldo H, Hamaker, Bruce R., 2014. Modulating state transition and mechanical properties of viscoelastic resins from maize zein through interactions with plasticizers and co-proteins. Journal of Cereal Science, 60(3), 576-583.
[30] Wang, S., Marcone, M., Barbut, S., & Lim, L. T. (2012). The impact of anthocyanin‐rich red raspberry extract (ARRE) on the properties of edible soy protein isolate (SPI) films. Journal of Food Science, 77(4), C497-C505.
[31] Merz, B., Capello, C., Leandro, G. C., Moritz, D. E., Monteiro, A. R., & Valencia, G. A. (2020). A novel colorimetric indicator film based on chitosan, polyvinyl alcohol and anthocyanins from jambolan (Syzygium cumini) fruit for monitoring shrimp freshness. International Journal of Biological Macromolecules, 153, 625-632.
[32] Dong, Y. Z., Zheng, Y. F., Duan, H., Sun, Y. F., & Chen, Y. H. (2005). Formation of pyrite (FeS2) thin nano-films by thermal-sulfurating electrodeposition films at different temperature. Materials Letters, 59(19-20), 2398-2402.
[33] Krochta, J., & De Mulder-Johnston, C. (1997). Scientific Status Summary-edible and biodegradable polymer films. Food Technol, 51(2), 61-74.
[34] Gontard, N., Guilbert, S., & CUQ, J. L. (1992). Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. Journal of food science, 57(1), 190-195.
[35] Ezati, P., & Rhim, J. W. (2020). pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications. Food Hydrocolloids, 102, 105629.
[36] Zhai, X., Shi, J., Zou, X., Wang, S., Jiang, C., Zhang, J., ... & Holmes, M. (2017). Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocolloids, 69, 308-317.
[37] Yong, H., Wang, X., Zhang, X., Liu, Y., Qin, Y., & Liu, J. (2019). Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocolloids, 94, 93-104.
[38] Longares, A., Monahan, F. J., O’riordan, E. D., & O’sullivan, M. (2004). Physical properties and sensory evaluation of WPI films of varying thickness. LWT-Food Science and Technology, 37(5), 545-550.
[39] Lazarus, Richard S. "From psychological stress to the emotions: A history of changing outlooks." Annual review of psychology 44.1 (1993): 1-22.
[40] Ramos-Elorduy, J., González, E. A., Hernández, A. R., & Pino, J. M. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. Journal of economic entomology, 95(1), 214-220.
[41] Andretta, R., Luchese, C. L., Tessaro, I. C., & Spada, J. C. (2019). Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression. Food Hydrocolloids, 93, 317-324.
[42] Kuswandi, B., Restyana, A., Abdullah, A., Heng, L. Y., & Ahmad, M. (2012). A novel colorimetric food package label for fish spoilage based on polyaniline film. Food control, 25(1), 184-189.
[43] Chun, H. N., Kim, B., & Shin, H. S. (2014). Evaluation of a freshness indicator for quality of fish products during storage. Food science and biotechnology, 23(5), 1719-1725.
[44] Majzoobi, M., Kashni, R. And Farahnaki, A. 1392 Determined Some features of bran-enriched dough and biscuits Oat. Journal of Food Industry Research, Volume 23, Number 38-45: 1,
[45] Krishnan, R., Dharmaraj, U., Manohar, R. S., & Malleshi, N. G. (2011). Quality characteristics of biscuits prepared from finger millet seed coat based composite flour. Food chemistry, 129(2), 499-506.
[46] Ma, Q., Ren, Y., Gu, Z., & Wang, L. (2017). Developing an intelligent film containing Vitis amurensis husk extracts: The effects of pH value of the film-forming solution. Journal of Cleaner Production, 166, 851-859.
[47] Erna, K. H., Felicia, W. X. L., Rovina, K., Vonnie, J. M., & Huda, N. (2022). Development of curcumin/rice starch films for sensitive detection of hypoxanthine in chicken and fish meat. Carbohydrate Polymer Technologies and Applications, 3, 100189.