[1] Arruda, I. N. Q., Pereira Jr, V. A., & Stefani, R. (2015). Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as TimeeTemperature Indicators for application in intelligent food packaging. Food Hydrocolloids, 43(18), 0e188.
[2] Pacquit, A., Frisby, J., Diamond, D., Lau, K. T., Farrell, A., Quilty, B., & Diamond, D. (2007). Development of a smart packaging for the monitoring of fish spoilage. Food chemistry, 102(2), 466-470.
[3] Kalpana, S., Priyadarshini, S. R., Leena, M. M., Moses, J. A., & Anandharamakrishnan, C. (2019). Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology, 93, 145-157.
[4] Singh, B. P., Shukla, V., Lalawmpuii, H., & Kumar, S. (2018). Indicator sensors for monitoring meat quality: A. Journal of Pharmacognosy and Phytochemistry, 7(4), 809-812.
[5] Kerry J, Butler P (eds) (2008) Smart packaging technologies for fast moving consumer goods. Wiley, Colorado
[6] Pirsa, S., & Aghbolagh Sharifi, K. (2020). A review of the applications of bioproteins in the preparation of biodegradable films and polymers. Journal of Chemistry Letters, 1(2), 47-58.
[7] Tsuji, H. (2014). Poly (lactic acid). Bio-based plastics: materials and applications, 171-239.
[8] Chandrasekhar, J., Madhusudhan, M. C., & Raghavarao, K. S. M. S. (2012). Extraction of anthocyanins from red cabbage and purification using adsorption. Food and bioproducts processing, 90(4), 615-623.
[9] Pereira Jr, V. A., de Arruda, I. N. Q., & Stefani, R. (2015). Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for application in intelligent food packaging. Food Hydrocolloids, 43, 180-188.
[10] Castañeda-Ovando, A., de Lourdes Pacheco-Hernández, M., Páez-Hernández, M. E., Rodríguez, J. A., & Galán-Vidal, C. A. (2009). Chemical studies of anthocyanins: A review. Food chemistry, 113(4), 859-871.
[11] Zhang, J., Zou, X., Zhai, X., Huang, X., Jiang, C., & Holmes, M. (2019). Preparation of an intelligent pH film based on biodegradable polymers and roselle anthocyanins for monitoring pork freshness. Food chemistry, 272, 306-312.
[12] Jiang, G., Hou, X., Zeng, X., Zhang, C., Wu, H., Shen, G., & Chen, A. (2020). Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. International Journal of Biological Macromolecules, 143, 359-372.
[13] Vo, T. V., Dang, T. H., & Chen, B. H. (2019). Synthesis of Intelligent pH Indicative Films from Chitosan/Poly (vinyl alcohol)/Anthocyanin Extracted from Red Cabbage. Polymers, 11(7), 1088.
[14] Chen, M., Yan, T., Huang, J., Zhou, Y., & Hu, Y. (2020). Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. International Journal of Biological Macromolecules, 179, 90-100.
[15] Alizadeh-Sani, M., Mohammadian, E., Rhim, J. W., & Jafari, S. M. (2020). pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends in Food Science & Technology, 105, 93-144.
[16]
[17] Rhim, J. W., Hong, S. I., & Ha, C. S. (2009). Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT-Food Science and Technology, 42(2), 612-617.
[18] ASTM. 2000. E 96: Standard method for water vapor transmission of materials. In Annual Book of ASTM Standards (pp. 785–792). American Society for Testing and Materials.
[19] Maftoonazad, N., Ramaswamy, H. S., Moalemiyan, M., & Kushalappa, A. C. (2007). Effect of pectin-based edible emulsion coating on changes in quality of avocado exposed to Lasiodiplodia theobromae infection. Carbohydrate polymers, 68(2), 341-349.
[20] AOAC (2005) Official methods of analysis of AOAC International. AOAC international.
[21] Basiri, Sh., Shahidi, F., Kadkhodai, R., Farhoush, R., Investigation of the effect of ultrasonic waves on pre-processing extraction of oil from the spring, 2011, Science Quarterly, 115-122, p.
[22] Fernandes, F. A., Oliveira, F. I., & Rodrigues, S. (2008). Use of ultrasound for dehydration of papayas. Food and Bioprocess Technology, 1(4), 339-345.
[23] Mason, T. J., Paniwnyk, L., & Lorimer, J. P. (1996). The uses of ultrasound in food technology. Ultrasonics sonochemistry, 3(3), S253-S260.
[24] Shukla, V., Kandeepan, G., Vishnuraj, M. R., and Soni, A., 2016. Anthocyanins based indicator sensor for smart packaging application. Agric. Res. 5: 205-209. https://doi.org/10.1007/ s40003-016-0211-0
[25] Rouhani, R., and Ein Afshar, S., and Ahmadzadeh, R. (1394). Extraction of anthocyanin and antioxidant compounds of saffron flowers using ultrasound technology. Iranian Food Science and Technology Research, 11 (2), 161-170.
[26] Oancea S., Drághici O. (2013): pH and thermal stability of anthocyanin-based optimised extracts of Romanian red onion cultivars. Czech J. Food Sci., 31: 283-291.
[27] Pedramnia, A., and Sharifi, A., and Tavakolipour, H. (1389). Optimization of barberry anthocyanin extraction process in the presence of ultrasound. Innovation in Food Science and Technology (Food Science and Technology), 2 (1 (4 in a row)), 45-52.
[28] Chen, M.; Yan, T.; Huang, J.; Zhou, Y.; Hu, Y. Fabrication of halochromic smart films by immobilizing red cabbage anthocyanins into chitosan/oxidized-chitin nanocrystals composites for real-time hairtail and shrimp freshness monitoring. Int. J. Biol. Macromol. 2021, 179, 90–100.
[29] Erickson, Daniel P, Renzetti, Stefano, Jurgens, Albert, Campanella, Osvaldo H, Hamaker, Bruce R., 2014. Modulating state transition and mechanical properties of viscoelastic resins from maize zein through interactions with plasticizers and co-proteins. Journal of Cereal Science, 60(3), 576-583.
[30] Wang, S., Marcone, M., Barbut, S., & Lim, L. T. (2012). The impact of anthocyanin‐rich red raspberry extract (ARRE) on the properties of edible soy protein isolate (SPI) films. Journal of Food Science, 77(4), C497-C505.
[31] Merz, B., Capello, C., Leandro, G. C., Moritz, D. E., Monteiro, A. R., & Valencia, G. A. (2020). A novel colorimetric indicator film based on chitosan, polyvinyl alcohol and anthocyanins from jambolan (Syzygium cumini) fruit for monitoring shrimp freshness. International Journal of Biological Macromolecules, 153, 625-632.
[32] Dong, Y. Z., Zheng, Y. F., Duan, H., Sun, Y. F., & Chen, Y. H. (2005). Formation of pyrite (FeS2) thin nano-films by thermal-sulfurating electrodeposition films at different temperature. Materials Letters, 59(19-20), 2398-2402.
[33] Krochta, J., & De Mulder-Johnston, C. (1997). Scientific Status Summary-edible and biodegradable polymer films. Food Technol, 51(2), 61-74.
[34] Gontard, N., Guilbert, S., & CUQ, J. L. (1992). Edible wheat gluten films: influence of the main process variables on film properties using response surface methodology. Journal of food science, 57(1), 190-195.
[35] Ezati, P., & Rhim, J. W. (2020). pH-responsive chitosan-based film incorporated with alizarin for intelligent packaging applications. Food Hydrocolloids, 102, 105629.
[36] Zhai, X., Shi, J., Zou, X., Wang, S., Jiang, C., Zhang, J., ... & Holmes, M. (2017). Novel colorimetric films based on starch/polyvinyl alcohol incorporated with roselle anthocyanins for fish freshness monitoring. Food Hydrocolloids, 69, 308-317.
[37] Yong, H., Wang, X., Zhang, X., Liu, Y., Qin, Y., & Liu, J. (2019). Effects of anthocyanin-rich purple and black eggplant extracts on the physical, antioxidant and pH-sensitive properties of chitosan film. Food Hydrocolloids, 94, 93-104.
[38] Longares, A., Monahan, F. J., O’riordan, E. D., & O’sullivan, M. (2004). Physical properties and sensory evaluation of WPI films of varying thickness. LWT-Food Science and Technology, 37(5), 545-550.
[39] Lazarus, Richard S. "From psychological stress to the emotions: A history of changing outlooks." Annual review of psychology 44.1 (1993): 1-22.
[40] Ramos-Elorduy, J., González, E. A., Hernández, A. R., & Pino, J. M. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. Journal of economic entomology, 95(1), 214-220.
[41] Andretta, R., Luchese, C. L., Tessaro, I. C., & Spada, J. C. (2019). Development and characterization of pH-indicator films based on cassava starch and blueberry residue by thermocompression. Food Hydrocolloids, 93, 317-324.
[42] Kuswandi, B., Restyana, A., Abdullah, A., Heng, L. Y., & Ahmad, M. (2012). A novel colorimetric food package label for fish spoilage based on polyaniline film. Food control, 25(1), 184-189.
[43] Chun, H. N., Kim, B., & Shin, H. S. (2014). Evaluation of a freshness indicator for quality of fish products during storage. Food science and biotechnology, 23(5), 1719-1725.
[44] Majzoobi, M., Kashni, R. And Farahnaki, A. 1392 Determined Some features of bran-enriched dough and biscuits Oat. Journal of Food Industry Research, Volume 23, Number 38-45: 1,
[45] Krishnan, R., Dharmaraj, U., Manohar, R. S., & Malleshi, N. G. (2011). Quality characteristics of biscuits prepared from finger millet seed coat based composite flour. Food chemistry, 129(2), 499-506.
[46] Ma, Q., Ren, Y., Gu, Z., & Wang, L. (2017). Developing an intelligent film containing Vitis amurensis husk extracts: The effects of pH value of the film-forming solution. Journal of Cleaner Production, 166, 851-859.
[47] Erna, K. H., Felicia, W. X. L., Rovina, K., Vonnie, J. M., & Huda, N. (2022). Development of curcumin/rice starch films for sensitive detection of hypoxanthine in chicken and fish meat. Carbohydrate Polymer Technologies and Applications, 3, 100189.