ارزیابی ویژگی‌های پروبیوتیکی لاکتوباسیلوس برویس به عنوان باکتری اسید لاکتیک غالب جدا شده از آمارانت تخمیر شده

نویسندگان
گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران
چکیده
ارزیابی ویژگی­های پروبیوتیکی باکتری­های اسید لاکتیک جدا شده از شبه غلات تخمیر شده در تهیه کشت­های میکروبی اهمیت وافری دارد. در پژوهش حاضر، پس از شناسایی مولکولی، خصوصیات پروبیوتیکی باکتری­ اسید لاکتیک غالب جدا شده از تخمیر آمارانت مورد ارزیابی قرار گرفت. توالی­یابی محصولات PCR منجر به شناسایی لاکتوباسیلوس برویس به عنوان جدایه لاکتیکی غالب گردید. زنده­مانی جدایه مذکور پس از تیمار متوالی اسید و صفرا در مقایسه با نمونه کنترل از 108 به حدود CFU/mL 106 رسید و بیشترین اثر ضد باکتریایی را در برابر استافیلوکوکوس اورئوس از خود نشان داد. با این­حال، هاله عدم رشد استافیلوکوکوس اورئوس در حضور جدایه لاکتیکی در مقایسه با هاله عدم رشد لیستریا مونوسیتوژنز اختلاف معنی­داری نداشت (05/0P> ). همچنین جدایه لاکتیکی قابلیت خود اتصالی (19/36 درصد) و دگر اتصالی مناسبی با استافیلوکوکوس اورئوس (24/71 درصد) داشت و فاقد فعالیت همولیزی بود. علاوه بر این، نسبت به اکثر آنتی­بیوتیک­های مورد مطالعه مقاوم بود. با توجه با قابلیت­های پروبیوتیکی مناسب لاکتوباسیلوس برویس جدا شده از تخمیر آمارانت می­توان از آن به عنوان کشت میکروبی آغازگر و یا پروبیوتیک در صنایع تخمیری استفاده نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of probiotic properties of Lactobacillus brevis as the predominant LAB isolated from fermented amaranth

نویسندگان English

parvin Shayesteh Kia
Alireza Sadeghi
Mahdi Kashaninejad
Morteza Khomeiri
Maryam Zarali
Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gonrgan, Iran
چکیده English

Evaluation of probiotic properties of lactic acid bacteria (LAB) isolated from fermented pseudocereals has crucial importance to prepare microbial cultures. In the present study, after molecular identification, probiotic properties of the predominant LAB isolate were investigated. Sequencing results of the PCR products led to the identification of Lactobacillus brevis SKA01 as the predominant LAB. The survival of the LAB isolate after continues treatment of acid and bile reached to 106 compared to the control sample (108 CFU/mL), and it showed the highest antibacterial effect on Staphylococcus aureus. Meanwhile, there was no significant difference (P>0.05) between inhibitory zone diameter of the S. aureus and Listeria monocytogenes in the present of the LAB isolate. LAB isolate was capable of good auto-aggregation (36.19%) and co-aggregation with S. aureus (71.24%), and it had no hemolytic activity. Furthermore, it was resistant to most of the tested antibiotics. By considering the proper probiotic potentials of the L. brevis isolated from fermented amaranth, it is possible to use the isolate as microbial starter or probiotic culture in fermentation industries.

کلیدواژه‌ها English

predominant LAB isolate
fermented buckwheat
probiotic characteristics
[1] Bajaj, B. K., Claes, I. J., & Lebeer, S. (2021). Functional mechanisms of probiotics. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 321-327.
[2] Gobbetti, M., Rizzello, C. G., Di Cagno, R., & De Angelis, M. (2014). How the sourdough may affect the functional features of leavened baked goods. Food Microbiology, 37, 30-40.‏
[3] Venskutonis, P. R., & Kraujalis, P. (2013). Nutritional components of amaranth seeds and vegetables: a review on composition, properties, and uses. Comprehensive Reviews in Food Science and Food Safety, 12(4), 381-412.
[4] Sterr, Y., Weiss, A., & Schmidt, H. (2009). Evaluation of lactic acid bacteria for sourdough fermentation of amaranth. International Journal of Food Microbiology, 136(1), 75-82.
[5] Vera-Pingitore, E., Jimenez, M. E., Dallagnol, A., Belfiore, C., Fontana, C., Fontana, P., ... & Plumed-Ferrer, C. (2016). Screening and characterization of potential probiotic and starter bacteria for plant fermentations. LWT-Food Science and Technology, 71, 288-294.
[6] Russo, P., Arena, M. P., Fiocco, D., Capozzi, V., Drider, D., & Spano, G. (2017). Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products. International Journal of Food Microbiology, 247, 48-54.
[7] AACC International. (2010). Approved methods of the American association of cereal chemists. 11th Ed. The St. Paul.
[8] Ruiz Rodríguez, L., Vera Pingitore, E., Rollan, G., Martos, G., Saavedra, L., Fontana, C., ... & Vignolo, G. (2016). Biodiversity and technological potential of lactic acid bacteria isolated from spontaneously fermented amaranth sourdough. Letters in Applied Microbiology, 63(2), 147-154.
[9] Abnous, K., Brooks, S. P., Kwan, J., Matias, F., Green-Johnson, J., Selinger, L. B., ... & Kalmokoff, M. (2009). Diets enriched in oat bran or wheat bran temporally and differentially alter the composition of the fecal community of rats. The Journal of Nutrition, 139(11), 2024-2031.
[10] Angmo, K., Kumari, A., & Bhalla, T. C. (2016). Probiotic characterization of lactic acid bacteria isolated from fermented foods and beverage of Ladakh. LWT-Food Science and Technology, 66, 428-435.
[11] Zhang, Y., Zhang, L., Du, M., Yi, H., Guo, C., Tuo, Y., et al., (2011). Antimicrobial activity against Shigella sonnei and probiotic properties of wild lactobacilli from fermented food. Microbiological Research, 167(1), 27-31.
[12] Jorgensen, J. H., & Turnidge, J. D. (2015). Susceptibility test methods: dilution and disk diffusion methods. Manual of Clinical Microbiology, 1253-1273.
[13] Chavan, R. S., & Chavan, S. R. (2011). Sourdough technology—a traditional way for wholesome foods: a review. Comprehensive Reviews in Food Science and Food Safety, 10(3), 169-182.
[14] De Vuyst, L., & Neysens, P. (2005). The sourdough microflora: biodiversity and metabolic interactions. Trends in Food Science & Technology, 16(1-3), 43-56.
[15] Adesulu-Dahunsi, A. T., Jeyaram, K., & Sanni, A. I. (2018). Probiotic and technological properties of exopolysaccharide producing lactic acid bacteria isolated from cereal-based nigerian fermented food products. Food Control, 92, 225-231.
[16] Sadeghi, A., Ebrahimi, M., Raeisi, M., & Nematollahi, Z. (2019). Biological control of foodborne pathogens and aflatoxins by selected probiotic LAB isolated from rice bran sourdough. Biological Control, 130, 70-79.
[17] Wang, C., Cui, Y., & Qu, X. (2018). Mechanisms and improvement of acid resistance in lactic acid bacteria. Archives of Microbiology, 200(2), 195-201.
[18] Patel, A., Prajapati, J. B., Holst, O., & Ljungh, A. (2014). Determining probiotic potential of exopolysaccharide producing lactic acid bacteria isolated from vegetables and traditional Indian fermented food products. Food Bioscience, 5, 27-33.
[19] Bao, Y., Zhang, Y., Zhang, Y., Liu, Y., Wang, S., Dong, X., ... & Zhang, H. (2010). Screening of potential probiotic properties of Lactobacillus fermentum isolated from traditional dairy products. Food Control, 21(5), 695-701.
[20] Han, Q., Kong, B., Chen, Q., Sun, F., & Zhang, H. (2017). In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics. Journal of Functional Foods, 32, 391-400.
[21] Zangeneh, M., Khaleghi, M., & Khorrami, S. (2019). Isolation of Lactobacillus plantarum strains with robust antagonistic activity, qualified probiotic properties, and without antibiotic-resistance from traditional sourdough. Avicenna Journal of Clinical Microbiology and Infection, 6(2), 66-74.
[22] Collado, M. C., Meriluoto, J., & Salminen, S. (2008). Adhesion and aggregation properties of probiotic and pathogen strains. European Food Research and Technology, 226(5), 1065-1073.
[23] Ramos, C. L., Thorsen, L., Schwan, R. F., & Jespersen, L. (2013). Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiology, 36(1), 22-29.‏
[24] Tavakoli, M., Hamidi-Esfahani, Z., Hejazi, M. A., Azizi, M. H., & Abbasi, S. (2017). Characterization of probiotic abilities of Lactobacilli isolated from Iranian Koozeh traditional cheese. Polish Journal of Food and Nutrition Sciences, 67(1), 41-48.
[25]Vasiljevic, T., & Shah, N. P. (2008). Probiotics—from Metchnikoff to bioactives. International Dairy Journal, 18(7), 714-728.
[26]Makras, L., Triantafyllou, V., Fayol-Messaoudi, D., Adriany, T., Zoumpopoulou, G., Tsakalidou, E., ... & De Vuyst, L. (2006). Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Research in Microbiology, 157(3), 241-247.
[27] Muñoz, M. D. C. C., Benomar, N., Lerma, L. L., Gálvez, A., & Abriouel, H. (2014). Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Aloreña table olives throughout fermentation process. International Journal of Food Microbiology, 172, 110-118.
[28] Li, Y., Li, L., Kromann, S., Chen, M., Shi, L., & Meng, H. (2019). Antibiotic resistance of Lactobacillus spp. and Streptococcus thermophilus isolated from Chinese fermented milk products. Foodborne Pathogens and Disease, 16(3), 221-228.
[29] Ammor, M. S., Flórez, A. B., & Mayo, B. (2007). Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiology, 24(6), 559-570.
[30] van Reenen, C. A., & Dicks, L. M. (2011). Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: what are the possibilities? A review. Archives of Microbiology, 193(3), 157-168.
[31] Sharma, K., Attri, S., & Goel, G. (2019). Selection and evaluation of probiotic and functional characteristics of autochthonous lactic acid bacteria isolated from fermented wheat flour dough babroo. Probiotics and Antimicrobial Proteins, 11(3), 774-784.
[32] Argyri, A. A., Zoumpopoulou, G., Karatzas, K. A. G., Tsakalidou, E., Nychas, G. J. E., Panagou, E. Z., & Tassou, C. C. (2013). Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiology, 33(2), 282-291.