پایدارسازی حرارتی عصاره آنتوسیانینی گلبرگ زعفران با استفاده از روش ریزپوشانی و کاربرد ‌آن در مدل غذایی

نویسندگان
1 دانشجوی کارشناسی ارشد، گروه علوم و صنایع غذایی، موسسه آموزش عالی جهاد دانشگاهی کاشمر، کاشمر، ایران
2 استادیار گروه پژوهشی افزودنی های غذایی، پژوهشکده علوم و فناوری مواد غذایی، سازمان جهاد دانشگاهی خراسان ‌رضوی
چکیده
یکی از چالش های مهمی که در زمینه استفاده از آنتوسیانینها وجود دارد، پایداری نسبتا پایین آنها مخصوصا در برابر نور و حرارت میباشد. بنابراین، هدف اصلی این پژوهش، افزایش پایداری عصاره آنتوسیانینی استخراجی از گلبرگ زعفران در برابر تیمارهای حرارتی و شرایط نوری میباشد. برای رسیدن به این هدف، در بیشتر موارد از روش ریزپوشانی استفاده میشود. برای پایدارسازی عصاره آنتوسیانینی گلبرگ زعفران، بهینهسازی ریزپوشانی آنتوسیانینها با صمغ عربی، صمغ فارسی، مالتودکسترین و پروتئین آب‏پنیر انجام شد و پایداری حرارتی آنها در نوشیدنی مدل بررسی شد. نیمه عمر آنتوسیانین طی تیمار حرارتی (در دمای 90 درجه سانتیگراد) 8/100 دقیقه بود و مبنای تیمار حرارتی برای نمونهها قرار گرفت. از میان ترکیبات دیواره‎ای مورد استفاده برای ریزپوشانی عصاره آنتوسیانینی، بیشترین میزان آنتوسیانین کل ریزکپسول ها مربوط به ریزکپسول مالتودکسترین (7/191 میلی گرم سیانیدین 3- گلیکوزید به ازای 100 گرم پودر گلبرگ) بود. بعد از آن، نمونههایی که دیواره آن دوجزئی بود و یک جزء آن را مالتودکسترین تشکیل می داد، قرار داشتند. کمترین میزان آنتوسیانین کل نیز مربوط به ریزکپسول های حاوی صمغ عربی بود. پس از بکار بردن ریزکپسول ها در نوشیدنی مدل، بیشترین آنتوسیانین باقی مانده (55/63 درصد) مربوط به ریزکپسول حاوی دیواره ترکیبی مالتودکسترین و کنسانتره پروتئین آب پنیر (به نسبت 1 به 1) بود. بنابراین دیواره پروتئینی، تاثیر مثبت بیشتری بر محافظت از آنتوسیانین‏ها در نوشیدنی مدل طی فرآیندهای حرارتی داشته است.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Thermal stabilization of the anthocyanin extract of saffron petal using ‎encapsulation and its application in the model drink ‎

نویسندگان English

Vahid Pasban Noghabi 1
hamed saberian 2
1 MSc. Student, Department of Food Science and Technology, ACECR Kashmar ‎Higher Education Institute, Kashmar, Iran‎
2 ‎Assistant Professor of Food Additives Department, Food Science and Technology Research Institute, ‎ACECR, Khorasan Razavi, Iran
چکیده English

One of the most important challenge about using anthocyanin, is its low stability, especially against light and heat condition. Therefore, the main goal of this research was to increase the stability of the anthocyanin extract of the saffron petal in thermal and light condition. To reach this goal, encapsulation is the common method. Optimization of the anthocyanin encapsulation by Arabic gum, Persian gum, whey protein and maltodextrin was conducted to investigate the thermal stability in the model drink. Anthocyanin half- life during heat treatment (at 90 °C) was 100.8 min, which became the base of the heat treatment for the model drinks. Among the different wall material used in encapsulating of the anthocyanin extract, the highest total anthocyanin content was related to the maltodextrin microcapsule (191.7 mg cyaniding 3- glycoside/ 100g saffron petal powder). After that, there were the samples with two-part wall that one was maltodextrin. The lowest total anthocyanin was related to the microcapsules containing gum Arabic. After applying the microcapsule to the model drink, the highest anthocyanin retained (63.55درصد) was related to the microcapsule containing the combined maltodextrin and whey protein concentrate (at ratio of 1:1). Therefore the protein wall had the more positive effect on the retention of the anthocyanin in the model drink during thermal treatments.

کلیدواژه‌ها English

Thermal stabilization
Anthocyanin
Saffron petal
Encapsulation
Whey protein
‎[1] Carocho M, Barreiro MF, Morales P, Ferreira ICFR. 2014. Adding molecules to food, pros and cons: A review on ‎synthetic and natural food additives. Comprehensive Review of Food Science and Food Safety, 13:377–99‎‌.‌
‎[2] Li X, Xu J, Tang X, Liu Y, Yu X, Wang Z, Liu W. 2016. Anthocyanins inhibit trastuzumab resistant breast cancer ‎in vitro and in vivo. Molecular Medicine Report, 13:4007–13‎‌.‌
‎[3] Dia VP, Wang Z, West M, Singh V, West L, Gonzalez de Mejia E. 2015. Processing method and corn cultivar ‎affected anthocyanin concentration from dried distillers grains with solubles. Journal of Agricalture and Food ‎Chemistry, 63:3205–18‎‌.‌
‎[4] Jackman RL, Smith JL. 1996. Anthocyanins and betalains. In: Hendry GAF, Houghton JD, editors. Natural food ‎colorants. 2nd ed. New York: Springer US. p 244–309‎‌.‌
‎[5] Agricultural statistics. (2018). Ministry of agriculture. (In Persian)‎
‎[6] Einafshar, S. (2018) the production of the colorants and natural antioxidant from the saffron petal waste, ‎Journal of Saffron, 1(1): 25-33. (In Persian)‎
‎[7] Cortez, R., Luna‐Vital, D. A., Margulis, D., & Gonzalez de Mejia, E. (2017). Natural pigments: stabilization ‎methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety, 16(1): ‎‎180-198‎‌.‌
‎ [8] Sui, X., Dong, X, Zhou, W. (2014). Combined effect of pH and high temperature on the stability and ‎antioxidant capacity of anthocyanins in aqueous solution. Food Chemistry, 163:163–70‎‌.‌
‎[9] Khazaei, K..M., Jafari, S.M., Ghorbani, M., Hemmati Khakki, A. (2014), Application of maltodextrin and gum ‎Arabic in microencapsulation of saffron petal’s anthcyanins and evaluating their stability. Charbohydrate ‎polymers, 105: 57-62.‎
‎[10] de Moura, S. C., Berling, C. L., Germer, S. P., Alvim, I. D., & Hubinger, M. D. (2018). Encapsulating ‎anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of ‎microparticles. Food Chemistry, 241: 317-327‎‌.‌
‎[11] da Rosa, J. R., Nunes, G. L., Motta, M. H., Fortes, J. P., Weis, G. C. C., Hecktheuer, L. H. R., ... & da Rosa, C. S. ‎‎(2019). Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray ‎drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocolloids, 89: 742-748‎‌.‌
‎[12] Khazaei, K. M., Jafari, S. M., Ghorbani, M., Kakhki, A. H., & Sarfarazi, M. (2016). Optimization of ‎anthocyanin extraction from saffron petals with response surface methodology. Food Analytical Methods, 9(7): ‎‎1993-2001.‎
‎[13] Jafari, S. M., Mahdavi-Khazaei, K., & Hemmati-Kakhki, A. (2016). Microencapsulation of saffron petal ‎anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate polymers, 140: ‎‎20-25.‎
‎[14] Chung, C., Rojanasasithara, T., Mutilangi, W., McClements, D.J. (2015). Enhanced stability of anthocyanins ‎based color in model beverage systems through whey protein isolate complexation. Food Chemistry, 76:761–8.‎
‎[15] Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. (2016). Enhancement of colour stability of ‎anthocyanins in model beverages by gum arabic addition. Food Chemistry, 201: 14-22.‎
‎ [16] Bolourian, sh. (2020). Optimization of the extraction the anthocyanin extract of the saffron petal. ACECR, ‎Research institute of the Food Science and technology. (In Persian)‎
‎ [17] Rahimi, S., & Abbasi, S. (2014). Characterization of some physicochemical and gelling properties of Persian ‎gum. Innovative Food Technologies, 1(4): 13-27.‎
‎[18] Ge, J., Yue, P., Chi, J., Liang, J., & Gao, X. (2018). Formation and stability of anthocyanins-loaded ‎nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocolloids, 74: 23-31.‎
‎[19] Ersus, S., and Yurdagel, U. 2007. Microencapsulation of anthocyanin pigments of black carrot (Daucuscarota ‎L.) by spray drier. Journal of Food Engineering, 80:805–812.‎
‎ [20] Kouroshian, M., Sharifi, a., Mahdavian, h., Bolourian, Sh. (2016). Investigation the physical properties of the ‎microcapsule of the Rubus fruticsos prepared by spray drying, Innovative in Food Science Technology, 7 (4): 85-‎‎94.‎
‎[21] Fan, L., Wang, Y., Xie, P., Zhang, L., Li, Y., & Zhou, J. (2019). Copigmentation effects of phenolics on color ‎enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural ‎simulation. Food chemistry, 27: 299-308.‎
‎[22] Jiménez-Aguilar, D. M., Ortega-Regules, A. E., Lozada-Ramírez, J. D., Pérez-Pérez, M. C. I., Vernon-Carter, E. ‎J., & Welti-Chanes, J. (2011). Color and chemical stability of spray-dried blueberry extract using mesquite gum as ‎wall material. Journal of Food Composition and Analysis, 24(6): 889-894.‎
‎[23] Desai, K.G.H., and Park, H.J. 2007. Recent developments in microencapsulation of food ingredients. Drying ‎Technology, 23(7):1361–1394.‎
‎[24] Cruz, L., BRAs, N. F., Teixeira, N., Mateus, N., Ramos, M. J., Dangles, O., & De Freitas, V. (2010). ‎Vinylcatechin dimers are much better copigments for anthocyanins than catechin dimer procyanidin B3. Journal of ‎agricultural and food chemistry, 58(5): 3159-3166.‎
‎[25] Idham, Z., Muhamad, I. I., & Sarmidi, M. R. (2012). Degradation kinetics and color stability of spray‐dried ‎encapsulated anthocyanins from hibiscus sabdariffa. Journal of Food Process Engineering, 35(4): 522-542.‎
‎[26] Cai, X., Du, X., Cui, D., Wang, X., Yang, Z., & Zhu, G. (2019). Improvement of stability of blueberry ‎anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocolloids, 91: ‎‎238-245.‎
‎[27] Tonon, R.V., Barbet, C., and Hubinger, M.D. (2010). Physicochemical and morphological characterisation of ‎açai (Euterpe oleraceae Mart.) powder produced with different carrier agents. Food Research International, ‎‎43:907–914‎‌.‌
‎[28] Chranioti, C., Nikoloudaki, A., & Tzia, C. (2015). Saffron and beetroot extracts encapsulated in maltodextrin, ‎gum Arabic, modified starch and chitosan: Incorporation in a chewing gum system. Carbohydrate polymers, 127, ‎‎252-263.‎
‎[29] Ferrari, C. C., Marconi Germer, S. P., Alvim, I. D., & de Aguirre, J. M. (2013). Storage stability of spray-dried ‎blackberry powder produced with maltodextrin or gum arabic. Drying Technology, 31(4), 470-478‎‌.‌
‎[30] Matini, S., Mortazavi, S.A., Sadeghian, A., Sharifi, A. (2018). Study of physicochemical properties of the ‎encapsulated extract of red grape peel of Sardasht and its stability in yogurt. Innovation in food science and ‎technolog, 7(3): 241-254. (In Persian)‎
‎ [31] Jafari, S. M., Mahdavi-Khazaei, K., & Hemmati-Kakhki, A. (2016). Microencapsulation of saffron petal ‎anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate polymers, 140, ‎‎20-25.‎
‎[32] Abdollahzadeh, M. (2019). Microencapsulation of barberry extract using spray dryer ‎technique and evaluation ‎of its physicochemical and stability ‎properties. M.S. Thesis. (In Persian)‎
‎[33] Legako, J., and Dunford, N.T. (2010). Effect of spray nozzle design on fish oil-whey protein microcapsule ‎properties. Food Science, 75(6):394-400.‎
‎[34] Hundre, S.Y., Karthik, P., and Anandharamakrishnan, C. (2015). Effect of whey protein isolate and beta ‎cyclodextrin wall systems on stability of microencapsulated vanillin by spray-freeze drying Method. Food ‎Chemistry, 174:16-24.‎
‎[35] Fang, Z. X., and Bhandari, B.(2011). Effect of spray drying and storage on the stability of bayberry ‎polyphenols. Food Chemistry, 129:1139–1147.‎
‎[36] Ansari, M., Hojjati, M. R. (2018). Optimization of the extraction and microencapsulation of anthocyanin from ‎red onion peel anf red cabbage. Journal of food research, 28 (1): 73-91. (In Persian)‎
‎[37] Burin, V. M., Rossa, P. N., Ferreira‐Lima, N. E., Hillmann, M. C., & Boirdignon‐Luiz, M. T. (2011). ‎Anthocyanins: optimisation of extraction from Cabernet Sauvignon grapes, microcapsulation and stability in soft ‎drink. International Journal of Food Science & Technology, 46(1), 186-193.‎
‎ [38] Guan, Y., & Zhong, Q. (2015). The improved thermal stability of anthocyanins at pH 5.0 by gum ‎arabic. LWT-Food Science and Technology, 64(2): 706-712.‎
‎[39] Brouillard, R., & Delaporte, B. (1977). Chemistry of anthocyanin pigments. 2. Kinetic and thermodynamic ‎study of proton transfer, hydration, and tautomeric reactions of malvidin 3-glucoside. Journal of the American ‎Chemical Society, 99(26): 8461-8468.‎
‎[40] Sadilova, E., Stintzing, F. C., Kammerer, D. R., & Carle, R. (2009). Matrix dependent impact of sugar and ‎ascorbic acid addition on color and anthocyanin stability of black carrot, elderberry and strawberry single strength ‎and from concentrate juices upon thermal treatment. Food Research International, 42(8): 1023-1033.‎
‎[41] Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in ‎microencapsulation of food ingredients: An overview. Food research international, 40(9), 1107-1121.‎