[1] Carocho M, Barreiro MF, Morales P, Ferreira ICFR. 2014. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Review of Food Science and Food Safety, 13:377–99.
[2] Li X, Xu J, Tang X, Liu Y, Yu X, Wang Z, Liu W. 2016. Anthocyanins inhibit trastuzumab resistant breast cancer in vitro and in vivo. Molecular Medicine Report, 13:4007–13.
[3] Dia VP, Wang Z, West M, Singh V, West L, Gonzalez de Mejia E. 2015. Processing method and corn cultivar affected anthocyanin concentration from dried distillers grains with solubles. Journal of Agricalture and Food Chemistry, 63:3205–18.
[4] Jackman RL, Smith JL. 1996. Anthocyanins and betalains. In: Hendry GAF, Houghton JD, editors. Natural food colorants. 2nd ed. New York: Springer US. p 244–309.
[5] Agricultural statistics. (2018). Ministry of agriculture. (In Persian)
[6] Einafshar, S. (2018) the production of the colorants and natural antioxidant from the saffron petal waste, Journal of Saffron, 1(1): 25-33. (In Persian)
[7] Cortez, R., Luna‐Vital, D. A., Margulis, D., & Gonzalez de Mejia, E. (2017). Natural pigments: stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety, 16(1): 180-198.
[8] Sui, X., Dong, X, Zhou, W. (2014). Combined effect of pH and high temperature on the stability and antioxidant capacity of anthocyanins in aqueous solution. Food Chemistry, 163:163–70.
[9] Khazaei, K..M., Jafari, S.M., Ghorbani, M., Hemmati Khakki, A. (2014), Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthcyanins and evaluating their stability. Charbohydrate polymers, 105: 57-62.
[10] de Moura, S. C., Berling, C. L., Germer, S. P., Alvim, I. D., & Hubinger, M. D. (2018). Encapsulating anthocyanins from Hibiscus sabdariffa L. calyces by ionic gelation: Pigment stability during storage of microparticles. Food Chemistry, 241: 317-327.
[11] da Rosa, J. R., Nunes, G. L., Motta, M. H., Fortes, J. P., Weis, G. C. C., Hecktheuer, L. H. R., ... & da Rosa, C. S. (2019). Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocolloids, 89: 742-748.
[12] Khazaei, K. M., Jafari, S. M., Ghorbani, M., Kakhki, A. H., & Sarfarazi, M. (2016). Optimization of anthocyanin extraction from saffron petals with response surface methodology. Food Analytical Methods, 9(7): 1993-2001.
[13] Jafari, S. M., Mahdavi-Khazaei, K., & Hemmati-Kakhki, A. (2016). Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate polymers, 140: 20-25.
[14] Chung, C., Rojanasasithara, T., Mutilangi, W., McClements, D.J. (2015). Enhanced stability of anthocyanins based color in model beverage systems through whey protein isolate complexation. Food Chemistry, 76:761–8.
[15] Chung, C., Rojanasasithara, T., Mutilangi, W., & McClements, D. J. (2016). Enhancement of colour stability of anthocyanins in model beverages by gum arabic addition. Food Chemistry, 201: 14-22.
[16] Bolourian, sh. (2020). Optimization of the extraction the anthocyanin extract of the saffron petal. ACECR, Research institute of the Food Science and technology. (In Persian)
[17] Rahimi, S., & Abbasi, S. (2014). Characterization of some physicochemical and gelling properties of Persian gum. Innovative Food Technologies, 1(4): 13-27.
[18] Ge, J., Yue, P., Chi, J., Liang, J., & Gao, X. (2018). Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocolloids, 74: 23-31.
[19] Ersus, S., and Yurdagel, U. 2007. Microencapsulation of anthocyanin pigments of black carrot (Daucuscarota L.) by spray drier. Journal of Food Engineering, 80:805–812.
[20] Kouroshian, M., Sharifi, a., Mahdavian, h., Bolourian, Sh. (2016). Investigation the physical properties of the microcapsule of the Rubus fruticsos prepared by spray drying, Innovative in Food Science Technology, 7 (4): 85-94.
[21] Fan, L., Wang, Y., Xie, P., Zhang, L., Li, Y., & Zhou, J. (2019). Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation. Food chemistry, 27: 299-308.
[22] Jiménez-Aguilar, D. M., Ortega-Regules, A. E., Lozada-Ramírez, J. D., Pérez-Pérez, M. C. I., Vernon-Carter, E. J., & Welti-Chanes, J. (2011). Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. Journal of Food Composition and Analysis, 24(6): 889-894.
[23] Desai, K.G.H., and Park, H.J. 2007. Recent developments in microencapsulation of food ingredients. Drying Technology, 23(7):1361–1394.
[24] Cruz, L., BRAs, N. F., Teixeira, N., Mateus, N., Ramos, M. J., Dangles, O., & De Freitas, V. (2010). Vinylcatechin dimers are much better copigments for anthocyanins than catechin dimer procyanidin B3. Journal of agricultural and food chemistry, 58(5): 3159-3166.
[25] Idham, Z., Muhamad, I. I., & Sarmidi, M. R. (2012). Degradation kinetics and color stability of spray‐dried encapsulated anthocyanins from hibiscus sabdariffa. Journal of Food Process Engineering, 35(4): 522-542.
[26] Cai, X., Du, X., Cui, D., Wang, X., Yang, Z., & Zhu, G. (2019). Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocolloids, 91: 238-245.
[27] Tonon, R.V., Barbet, C., and Hubinger, M.D. (2010). Physicochemical and morphological characterisation of açai (Euterpe oleraceae Mart.) powder produced with different carrier agents. Food Research International, 43:907–914.
[28] Chranioti, C., Nikoloudaki, A., & Tzia, C. (2015). Saffron and beetroot extracts encapsulated in maltodextrin, gum Arabic, modified starch and chitosan: Incorporation in a chewing gum system. Carbohydrate polymers, 127, 252-263.
[29] Ferrari, C. C., Marconi Germer, S. P., Alvim, I. D., & de Aguirre, J. M. (2013). Storage stability of spray-dried blackberry powder produced with maltodextrin or gum arabic. Drying Technology, 31(4), 470-478.
[30] Matini, S., Mortazavi, S.A., Sadeghian, A., Sharifi, A. (2018). Study of physicochemical properties of the encapsulated extract of red grape peel of Sardasht and its stability in yogurt. Innovation in food science and technolog, 7(3): 241-254. (In Persian)
[31] Jafari, S. M., Mahdavi-Khazaei, K., & Hemmati-Kakhki, A. (2016). Microencapsulation of saffron petal anthocyanins with cress seed gum compared with Arabic gum through freeze drying. Carbohydrate polymers, 140, 20-25.
[32] Abdollahzadeh, M. (2019). Microencapsulation of barberry extract using spray dryer technique and evaluation of its physicochemical and stability properties. M.S. Thesis. (In Persian)
[33] Legako, J., and Dunford, N.T. (2010). Effect of spray nozzle design on fish oil-whey protein microcapsule properties. Food Science, 75(6):394-400.
[34] Hundre, S.Y., Karthik, P., and Anandharamakrishnan, C. (2015). Effect of whey protein isolate and beta cyclodextrin wall systems on stability of microencapsulated vanillin by spray-freeze drying Method. Food Chemistry, 174:16-24.
[35] Fang, Z. X., and Bhandari, B.(2011). Effect of spray drying and storage on the stability of bayberry polyphenols. Food Chemistry, 129:1139–1147.
[36] Ansari, M., Hojjati, M. R. (2018). Optimization of the extraction and microencapsulation of anthocyanin from red onion peel anf red cabbage. Journal of food research, 28 (1): 73-91. (In Persian)
[37] Burin, V. M., Rossa, P. N., Ferreira‐Lima, N. E., Hillmann, M. C., & Boirdignon‐Luiz, M. T. (2011). Anthocyanins: optimisation of extraction from Cabernet Sauvignon grapes, microcapsulation and stability in soft drink. International Journal of Food Science & Technology, 46(1), 186-193.
[38] Guan, Y., & Zhong, Q. (2015). The improved thermal stability of anthocyanins at pH 5.0 by gum arabic. LWT-Food Science and Technology, 64(2): 706-712.
[39] Brouillard, R., & Delaporte, B. (1977). Chemistry of anthocyanin pigments. 2. Kinetic and thermodynamic study of proton transfer, hydration, and tautomeric reactions of malvidin 3-glucoside. Journal of the American Chemical Society, 99(26): 8461-8468.
[40] Sadilova, E., Stintzing, F. C., Kammerer, D. R., & Carle, R. (2009). Matrix dependent impact of sugar and ascorbic acid addition on color and anthocyanin stability of black carrot, elderberry and strawberry single strength and from concentrate juices upon thermal treatment. Food Research International, 42(8): 1023-1033.
[41] Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food research international, 40(9), 1107-1121.