بررسی تاثیر پیش تیمار آب نمک و دمای خشک کردن بر خصوصیات عملکردی ایزوله پروتئین استخراجی از کنجاله کنجد

نویسندگان
1 گروه علوم و صنایع غذایی، واحد دامغان، دانشگاه آزاد اسلامی، دامغان، ایران
2 گروه علوم و صنایع غذایی ، دانشکده کشاورزی ، واحد یزد ، دانشگاه آزاد اسلامی ، یزد، ایران
3 گروه علوم و صنایع غذایی، دانشکده تکنولوژی های صنعتی، دانشگاه علوم مالزی (USM)، پی نانگ، مالزی
چکیده
با افزایش تقاضا برای منابع پروتئینی جدید، تحقیقات در جهت استخراج و توسعه ایزوله­های پروتئینی با خصوصیات عملکردی مطلوب ضروری است. پروتئین کنجد به دلیل دارا بودن مقادیر بالای آمینواسید می­تواند به عنوان یک منبع پروتئینی گیاهی جدید مورد استفاده قرار بگیرد. در این مطالعه تاثیر غلظت نمک سدیم کلرید (0، 18 و 22 % وزنی/حجمی) و دمای خشک کردن (25، 45 و 180 درجه سانتیگراد) به عنوان دو پارامتر مهم تاثیرگذار بر خصوصیات عملکردی ایزوله پروتئین استخراج شده از کنجد مورد بررسی قرار گرفت. آزمون­های اندازه گیری حلالیت پروتئین در pHهای 4، 5، 7، 9 و 11، پایداری کف و پایداری امولسیون در pH برابر 11و ظرفیت نگهداری آب و روغن انجام شد. کمترین حلالیت پروتئین در pH برابر 5 مشاهده شد و با افزایش pH، حلالیت پروتئین افزایش یافت. با افزایش دما از 45 تا 180 درجه سانتیگراد در غلظت نمک ثابت حلالیت پروتئین و پایداری کف و امولسیون افزایش و ظرفیت نگهداری آب و روغن کاهش یافت. با افزایش غلظت نمک از 18 تا 22 درصد در دمای ثابت حلالیت پروتئین افزایش و ظرفیت نگهداری آب و روغن کاهش یافت. پایداری کف و امولسیون در غلظت آب نمک 18 % کمترین بود. بطور کلی بر اساس نتایج حاصل، دمای خشک کردن 45 درجه سلسیوس و آب نمک 18 درصد برای تهیه ایزوله پروتئینی با حداکثر ظرفیت نگهداری آب و روغن و دمای خشک کردن 180 درجه و آب نمک 22 درصد برای تولید ایزوله پروتئینی کنجد با بیشترین مقدارحلالیت، پایداری امولسیون و کف پیشنهاد می گردد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of brine and drying temperature on the functional properties of protein isolates extracted from sesame meal

نویسندگان English

Maryam Rezaei 1
Leila Nouri 1
Mohammad Daneshi 2
Abdoreza Mohammadi-Nafchi 3
fariborz nahidi 1
1 Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran.
2 Department of food science and technology,Agriculture college,Yazd Branch, Islamic Azad University,Yazd,Iran
3 Department of Food Science and Technology, USM university, Penang, Malaysia
چکیده English

As the demand for new protein sources increases, research is needed to extract and develop protein isolates with desirable functional properties. Sesame protein can be used as a new plant protein source due to its high amino acid content. In this study, the effect of sodium chloride salt concentration (0, 18 and 22% w / v) and drying temperature (25, 45 and 180 °C) as two important parameters affecting the functional properties of protein isolates extracted from sesame were investigated. Protein solubility tests at pH 4, 5, 7, 9 and 11, foam stability and emulsion stability at pH 11 and water holding capacity (WHC) and oil holding capacity (OHC) were performed. The lowest protein solubility was observed at pH 5 and with increasing pH, protein solubility increased. With increasing temperature from 45 to 180 °C at constant salt concentration, protein solubility and foam and emulsion stability increased and WHC and OHC decreased. An increasing in salt concentration from 18 to 22 % at constant temperature caused to increase in protein solubility and decrease in WHC and OHC. Foam and emulsion stability was lowest at 18% of salt concentration. In general, drying temperature of 45 degrees Celsius and salt concentration of 18% for preparation of protein isolate with maximum water and oil holding capacity and drying temperature of 180 °C and salt concentration of 22% for production of sesame protein isolate with maximum solubility, Emulsion stability and foam stability are recommended.

کلیدواژه‌ها English

Sesame protein Isolate
Emulsion stability
Foam stability
Protein solubility
Water and Oil holding Capacity
[1] Gao, Z., Shen, P., Lan, Y., Cui, L., Ohm, J.-B., Chen, B., & Rao, J. (2020). Effect of alkaline extraction pH on structure properties, solubility, and beany flavor of yellow pea protein isolate. Food Research International, 131, 109045.
[2] Feyzi, S., Varidi, M., Zare, F., & Varidi, M. J. (2015). Fenugreek (Trigonella foenum graecum) seed protein isolate: extraction optimization, amino acid composition, thermo and functional properties. Journal of the Science of Food and Agriculture, 95(15), 3165-3176.
[3] Le Priol, L., Dagmey, A., Morandat, S., Saleh, K., El Kirat, K., & Nesterenko, A. (2019). Comparative study of plant protein extracts as wall materials for the improvement of the oxidative stability of sunflower oil by microencapsulation. Food Hydrocolloids, 95, 105-115.
[4] Olasunkanmi, G. S., Omolayo, F. T., & Olusegun, O. T. (2017). Fatty acid profile, physico-chemical and functional properties of oil and protein isolate simultaneously extracted from sesame (sesamum indicum) seed. Annals. Food Science and Technology, 18(1), 1-10.
[5] Saini, C. S., Sharma, H. K., & Sharma, L. (2018). Thermal, structural and rheological characterization of protein isolate from sesame meal. Journal of Food Measurement and Characterization, 12(1), 426-432.
[6] Sharma, L., Singh, C., & Sharma, H. K. (2016). Assessment of functionality of sesame meal and sesame protein isolate from Indian cultivar. Journal of Food Measurement and Characterization, 10(3), 520-526.
[7] Sharma, N., Sharma, S., & Singh, B. (2020). Stability evaluation of iron and vitamin A during processing and storage of fortified pasta. Quality Assurance and Safety of Crops & Foods, 12(2), 50-60.
[8] Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254.
[9] Fathollahy, I., Farmani, J., Kasaai, M. R., & Hamishehkar, H. (2021). Characteristics and functional properties of Persian lime (Citrus latifolia) seed protein isolate and enzymatic hydrolysates. LWT, 140, 110765.
[10] Elsohaimy, S., Refaay, T., & Zaytoun, M. (2015). Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences, 60(2), 297-305.
[11] Rodsamran, P., & Sothornvit, R. (2018). Physicochemical and functional properties of protein concentrate from by-product of coconut processing. Food Chemistry, 241, 364-371.
[12] Shand, P., Ya, H., Pietrasik, Z., & Wanasundara, P. (2007). Physicochemical and textural properties of heat-induced pea protein isolate gels. Food Chemistry, 102(4), 1119-1130.
[13] Onsaard, E., Pomsamud, P., & Audtum, P. (2010). Functional properties of sesame protein concentrates from sesame meal. Asian Journal of Food and Agro-Industry, 3(4), 420-431.
[14] López, G., Flores, I., Gálvez, A., Quirasco, M., & Farrés, A. (2003). Development of a liquid nutritional supplement using a Sesamum indicum L. protein isolate. LWT-Food Science and Technology, 36(1), 67-74.
[15] Wu, H., Wang, Q., Ma, T., & Ren, J (2009). Comparative studies on the functional properties of various protein concentrate preparations of peanut protein. Food Research International, 42(3), 343-348.
[16] Ogunwolu, S. O., Henshaw, F. O., Mock, H.-P., Santros, A., & Awonorin, S. O. (2009). Functional properties of protein concentrates and isolates produced from cashew (Anacardium occidentale L.) nut. Food Chemistry, 115(3), 852-858.
[17] Ertürk, B., & Meral, R. (2019). The impact of stabilization on functional, molecular and thermal properties of rice bran. Journal ofCcereal Science, 88, 71-78.
[18] Zhong, C., Wang, R., Zhou, Z., Jia, S.-R., Tan, Z.-L., & Han, P.-P. (2012). Functional properties of protein isolates from Caragana korshinskii Kom. extracted by three different methods. Journal of Agricultural and Food Chemistry, 60(41), 10337-10342.
[19] Chambal, B. (2013). Coconut press cake alkaline extract—Protein solubility and emulsification properties.
[20] Timilsena, Y. P., Adhikari, R., Barrow, C. J., & Adhikari, B. (2016). Physicochemical and functional properties of protein isolate produced from Australian chia seeds. Food Chemistry, 212, 648-656.
[21] Vinayashree, S., & Vasu, P. (2021). Biochemical, nutritional and functional properties of protein isolate and fractions from pumpkin (Cucurbita moschata var. Kashi Harit) seeds. Food Chemistry, 340, 128177.
[22] Wani, I. A., Sogi, D. S., & Gill, B. S. (2015). Physico-chemical and functional properties of native and hydrolysed protein isolates from Indian black gram (Phaseolus mungo L.) cultivars. LWT-Food Science and Technology, 60(2), 848-854.
[23] Chandra, S., Singh, S., & Kumari, D. (2015). Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. Journal of Food Science and Technology, 52(6), 3681-3688.
[24] Dachmann, E., Nobis, V., Kulozik, U., & Dombrowski, J. (2020). Surface and foaming properties of potato proteins: Impact of protein concentration, pH value and ionic strength. Food Hydrocolloids, 107, 105981.
[25] Dombrowski, J., Johler, F., Warncke, M., & Kulozik, U. (2016). Correlation between bulk characteristics of aggregated β-lactoglobulin and its surface and foaming properties. Food Hydrocolloids, 61, 318-328.
[26] Zhang, Q.-T., Tu, Z.-C., Xiao, H., Wang, H., Huang, X.-Q., Liu, G.-X. Lin, D.-R (2014). Influence of ultrasonic treatment on the structure and emulsifying properties of peanut protein isolate. Food and Bioproducts Processing, 92(1), 30-37.
[27] Jiang, S., Cheng, J., Jiang, Z., Geng, H., Sun, Y., Sun, C., & Hou, J. (2018). Effect of heat treatment on physicochemical and emulsifying properties of polymerized whey protein concentrate and polymerized whey protein isolate. LWT. 98, 134-140.
[28] Boye, J., Zare, F., & Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2), 414-431.
[29] Khalid, E., Babiker, E., & Tinay, A. E. (2003). Solubility and functional properties of sesame seed proteins as influenced by pH and/or salt concentration. Food Chemistry, 82(3), 361-366.
[30] Chandi, G. K., & Sogi, D. (2007). Functional properties of rice bran protein concentrates. Journal of Food Engineering, 79(2), 592-597.
[31] Labuckas, D., Maestri, D., & Lamarque, A. (2014). Effect of different oil extraction methods on proximate composition and protein characteristics of walnut (Juglans regia L.) flour. LWT-Food Science and Technology, 59(2), 794-799.
[32] Tomotake, H., Shimaoka, I., Kayashita, J., Nakajoh, M., & Kato, N. (2002). Physicochemical and functional properties of buckwheat protein product. Journal of Agricultural and Food Chemistry, 50(7), 2125-2129.