ارزیابی اثر روش‌های مختلف خشک کردن بر برخی صفات فیتوشیمیایی گیاه چوچاق (Eryngium caeruleum Trautv.)

نویسندگان
1 دانشجوی دکتری، گروه علوم باغبانی و زراعی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 1. گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شاهد، تهران، ایران2. مرکز تحقیقات گیاهان دارویی، دانشگاه شاهد، تهران، ایران
3 استادیار، گروه علوم باغبانی و زراعی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 استادیار پژوهش، مرکز تحقیقات گیاهان دارویی، پژوهشکده گیاهان دارویی جهاد دانشگاهی، کرج، ایران
5 استادیار، گروه علوم کشاورزی، دانشگاه فنی و حرفه‌ای، تهران، ایران
چکیده
فرآیند پس از برداشت گیاهان دارویی مانند خشک کردن، اهمیت زیادی در چرخه تولید این گیاهان دارد. جهت ارزیابی اثر روش‏های مختلف خشک کردن بر روی برخی صفات فیتوشیمیایی گیاه دارویی چوچاق، این مطالعه در اردیبهشت 1399 در قالب طرح کاملا تصادفی در سه تکرار انجام شد. گیاه چوچاق از باغات شهرستان نور در مرحله رویشی جمع­آوری گردید. تیمارهای این مطالعه شامل خشک کردن در سایه اتاق با دمای حدود 25±3 درجه سانتیگراد و تهویه مناسب، آفتاب، آون در دمای 45 درجه سانتیگراد، آون در دمای 55 درجه سانتیگراد، آون در دمای 65 درجه سانتیگراد، آون خلأ در دمای 45 درجه سانتی­گراد، آون خلأ در دمای 55 درجه سانتی­گراد، آون خلأ در دمای 65 درجه سانتی­گراد، مایکروویو با توان 200 وات، مایکروویو با توان 500 وات و مایکروویو با توان 800 وات و همچنین گیاه تازه (تر) بودند. صفات میزان رطوبت بر مبنای وزن تر و خشک، زمان و سرعت خشک شدن، میزان اسید آسکوربیک، میزان پروتئین، میزان کربوهیدرات کل، میزان فنول و فلاونوئید کل و فعالیت آنتی‏اکسیدانی مورد سنجش قرار رفت. نتایج نشان داد که روش‏های مختلف خشک کردن بر صفات فیتوشیمیایی تاثیر معنی­داری داشته­اند. کمترین زمان و بیشترین سرعت جهت خشک شدن نمونه‏های گیاهی مربوط به مایکروویو 800 وات بود. بیشترین مقدار اسید آسکوربیک (72/385 میکروگرم بر میلی‏گرم)، پروتئین (72/19 درصد)، فنول کل (19/47 میلی‏گرم گالیک اسید بر گرم ماده خشک)، فلاونوئید کل (96/50 میلی‏گرم کوئرستین بر گرم ماده خشک) و نیز فعالیت آنتی‏اکسیدانی (02/76 درصد) در گیاه تازه و پس از آن در تیمار خشک کردن با آون در دمای 55 درجه سانتی‏گراد مشاهده شد. بطور کلی این مطالعه نشان داد که بیشترین ترکیبات فیتوشیمیایی در گیاه تازه چوچاق یافت می­شود و در صورت ضرورت نگهداری، خشک کردن گیاه در آون با دمای 55 درجه سانتی‏گراد توصیه می­شود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of different drying methods on some phytochemical traits of Chuchak (Eryngium caeruleum Trautv.)

نویسندگان English

Soudabeh Nourzad 1
Hassanali Naghdi Badi 2
Sepideh Kalateh Jari 3
Ali Mehrafarin 4
Sakineh Saeidi-Sar 5
1 Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 1 Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran2 Medicinal Plants Research Center, Shahed University, Tehran, Iran
3 Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
4 Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
5 Departmentt of Agricultural Science, Technical and Vocational University (TVU), Tehran, Iran.
چکیده English

The post-harvest techniques of medicinal plants such as drying, is very important in their production cycle. The present study was carried out to evaluate the effect of different drying methods on some phytochemical traits of Chuchak in the spring of 2020 based on the completely randomized design with three replications. The chuchak samples were collected in the vegetative stage from the gardens of Noor city, Iran. The drying treatments were shade-drying at room temperature (25±3 °C), sun-drying, oven-drying (45, 55 and 65 °C), vacuum oven-drying (45, 55 and 65 °C), microwave-drying (200, 500 and 800 watts), and fresh samples. The studied traits were moisture content based on fresh and dry weight, drying time and speed, ascorbic acid content, protein content, total carbohydrate content, total phenol and flavonoid content and antioxidant activity. The results of the variance analysis showed the significant effect of drying methods on all studied properties of the samples (P≤0.01). The mean comparison showed that the minimum drying time and the maximum speed drying were related to the microwave (800 watts). The highest amount of ascorbic acid (385.72 µg/mg), protein (19.72%), total phenol (47.19 mg GA per 1 g dry matter), total flavonoids (50.96 mg quercetin per 1 g dry matter) as well as antioxidant activity (76.02%) was observed in the fresh plant and then in the oven-drying (55 °C).

کلیدواژه‌ها English

Eryngium caeruleum Trautv
Antioxidant activity
Ascorbic acid
Drying Methods
Total Phenol
[1] Zargari, A. 2004. Medicinal plants, first volume. Tehran: Tehran Publishing and Printing Institute.
[2] Ariapur, A. & Mirzaei Mullah, A. 2010. Medicinal, aromatic and industrial plants of forests and pastures. Publications of the Institute of Higher Education of Applied Science of the Ministry of Jihad Agriculture. First Edition. 216 p.
[3] Mozaffarian, V. 2012. Recognition of medicinal and aromatic plants of Iran. Contemporary Culture Publications. Tehran Iran.
[4] Ghahraman, A. 1993. Cormophytes of Iran (plant systematic). First Edition. Tehran University Publishing Center.
[5] Zhang, Z., Li, S., Ownby, S., Wang, P., Yuan, W. & Beasley, S. R. 2008. Phenolic compound and rate polyhydroxylated triterpenoid saponins from Eryngium yaccifolium. Phytochemistry. 69: 2070-2080.
[6] Thiem, B., Kikowska, M. A. & Kalemba, D. 2011. Essential oil composition of the different parts of Eryngium planum L. Molecules. 16: 7115-7124.
[7] Nebija, F., Kulevanova, S. & Stefova, M. 2006. Identification and determination of flavonois in Eryngii herba (Eryngium capestre L., Apiaceae). Macedonian Pharmaceutical Bulletin. 52(1, 2): 73-80.
[8] Gayatri, M. C., Madhu, M., Kavyashree, R., & Dhananjaya, S. P. 2006. A protocol for in vitro regeneration of (Eryngium foetidum L.). Indian journal of biotechnology. 5: 249-251.
[9] Paula, J. H. A., Seafortha, C. E. & Tikasinghb, T. 2011. Eryngium foetidum L.: a review. Fitoterapia. 82(3): 302-308.
[10] Soumyanath, A. 2006. Traditional medicines for modern times: Antidiabetic plants. CRC Press. 304 p.
[11] Oztekin, S. & Martinov, M. 2007. Medicinal and aromatic crops: harvesting, drying, and processing. CRC Press, pp 320.
[12] Soysal, Y. & Oztekin, S. 2001. Technical and economic performance of a tray dryer for medicinal and aromatic plants. Journal of Agricultural Engineering Research. 79: 73-79.
[13] Tankoa, H., Carriera, D. J., Duana, L. & Clausena, E. D. 2005. Pre and post harvest processing of medicinal plants. Plant Genetic Resources. 3: 304-313.
[14] Calixto, J. B. 2000. Efficacy, safety, quality control, market and regulatory guidelines for herbal medicines (phytotherapeutic agents), Brazilian Journal of Medical and Biological Research. 33: 179-189.
[15] Azizi, M., Rahmati, M., Ebadi, T. & Hassan Zadeh Khayat, M. 2010. Investigation of the effect of different drying methods on weight loss rate, essence content and percentage of Kamazolen of chamomile medical plant (Matricaria recutita L.). Iranian Journal of Medicinal and Aromatic Plant. 25(2): 182-92.
[16] Omidbeigi, R. 2005. Production and Processing of Medicinal Plants. Behnashr Pub. 347 P. (in Farsi)
[17] Sadowska, U., Kope´c, A., Kourimska, L., Zarubova, L. & Kloucek, P. 2017. The effect of drying methods on the concentration of compounds in sage and thyme. Journal of Food Processing and Preservation. 41, e13286.
[18] Ozbek, B. & Dadali, G. 2007. Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. Journal of Food Engineering. 4: 541-549.
[19] Sellami, I. H., Wannes, A. W., Rebey, I. B., Berrima, S., Chahed, T., Marzouk, B. & Limam, F. 2011. Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods, Food Chemistry. 126: 691-697.
[20] Rezvani Aghdam, A., Naghdi Badi, H., Abdossi, V., Hajiaghaee, R. & Hosseini, S. E. 2019. Changes in the Essential Oil Content and Composition of Lippia citriodora under Vacuum Oven-drying and Pre-drying Operation. The Journal of Medicinal Plants. 18(72): 110-120.
[21] Chakraborty, R. & Tilottama, D. 2016. Drying protocols for traditional medicinal herbs: A critical review. International Journal of Engineering and Technology. 4: 1–8.
[22] Rocha, R. P., Melo, C. E. & Radünz, L. L. 2011. Influence of drying process on the quality of medicinal plants: A review, Journal of Medicinal Plants Research. 5: 7076-7084.
[23] Asekun, O. T., Grierson, D. S. & Afolayan, A. J. 2007. Effects of drying methods on the quality and quantity of the essential oil of Mentha longifolia L. sub sp. capensis. Food Chemistry. 101: 995-998.
[24] Martinov, M., Oztekin, S. & Muller, J. 2007. Medicinal and Aromatic Crops. Harvesting, drying, and Processing, Haworth Food and Agricultural Press 390.
[25] Samadi, L., Larijani, K., Naghdi Badi, H. A. & Mehrafarin, A. 2018. Quality and quantity variation of the essential oils of Deracocephalum kotschyi Boiss, as affected by different drying methods. Journal of Food Processing and Preservation. 42(11): 1-12.
[26] Borchani, S. C., Besbes, M., Masmoudi, C., Blecker, M., Paquot, H. & Attia, H. 2011. Effect of drying methods on physico-chemical and antioxidant properties of date fiber concentrates, Food Chemistry. 125: 1194-1201.
[27] Dehghani Mashkani, M. R., Larijani, K., Mehrafarin, A. & Naghdi Badi, H. 2018. Changes in the essential oil content and composition of Thymus daenensis Celak. under different drying methods. Industrial Crops and Products. 112: 389-395.
[28] Hossain, M., Barry Ryan, C., Martin Diana, A. & Brunton, N. 2010. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chemistry. 123(1): 85-91.
[29] Mohtashami, S., Babalar, M., Mirjalili, M. H., Ebrahimzadeh Moosavi, M. & Adib, J. 2010. Effects of different drying methods on drying rate, essential oil content and antioxidant activity of Dracocephalum moldavica L. In: Proceedings of National Young Researchers Congress of Biology, 13th – 17th February, Tehran, Iran. (in Farsi)
[30] MirMostafaee, S., Azizi, M., Bahreini, M., Arouiee, H. & Oroojalian, F. 2014. The effects of different drying methods on speed of drying, essential oil and microbial load in Peppermint (Mentha × piperita L.). Journal of Plant Production. 20(4): 133-147.
[31] Kelin, B. P. & Perry, A. K. 1982. Ascorbic acid and vitamin A activity in selected vegetables from different geographical areas of the United State. Journal of Food Science. 47: 941-945.
[32] Jensen, E. S. 1996. Grain yield, symbiotic N2 fixation and interspecific competition for inorganic N in pea – barley intercrops. Plant and Soil. 182: 25-38.
[33] Carrol, H. V., Longley, R. W. & Roe. J. H. 1956. The determination of glycogen in liver and muscle by use of anthrone reagent. Journal of Biological Chemistry. 220(2): 583-593.
[34] McDonald, S., Prenzler, P. D., Autolovich, M. & Robards, K. 2001. Phenolic content and antioxidant activity of olive extracts. Food Chemistry. 73: 73-84.
[35] Oroojalian, F., Kasra-Kermanshahi, R., Azizi, M. and Bassami, M.R. 2010. Phytochemical composition of the essential oils from three Apiaceae species and their antibacterial effects on food-borne pathogens. Food Chemistry. 120(3): 765-70.
[36] Chang, C., Yang, M., Wen, H. & Chern, J. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis. 10: 178-182.
[37] Sun, T., Powers, J. R. & Tang, J. 2007. Evaluation of the antioxidant activity of Asparagus, broccoli and their juices. Food Chemistry. 105: 101-106.
[38] Hevia, F., Melin, P., Berti, M., Fischer, S. & Pinichet, C. 2002. Effect of drying temperature and air speed on cichoric acid and alkylamide content of Echinaceae purpurea. Acta Horticulture. 576: 321-325.
[39] Alibas, I. 2007. Microwave, air and combined microwave–air drying parameters of pumpkin slices. Journal of Food Science and Technology. 40: 1445-1451.
[40] Caceres, A. 2000. Calidad de la material prima para la elaboracion de productos fitofarmaceuticas. Primer Congreso International FITO. Por la investigacion, conservacion y diffusion del conocimiento de lasplantasmedicinals”. Lima, Peru.
[41] Moosavian, M. T. & Mohammadpoor, V. 2006. Investigation of effective parameters in drying process of food materials by Microwave. In: Proceedings of 6th National student congress f Chemistry Engineering & 5th National Student Congress of Oil Engineering, 29-30th August, Isfahan, Iran. (in Farsi)
[42] Abdullah, S., Ahmad, M. S., Shaari, A. R. & Johar, H. M. 2011. Drying characteristics and herbal metabolites, composition of misai kucing (Orthosiphon staminiues Benth.) leaves. In: Proceedings of International conference on food engineering and biotechnology, 7th-9th May, Bangkok, Thailand.
[43] Arab Hosseini, A. 2005. Quality, energy requirement and costs of drying tarragon (Artemisia dracunculus L.). Ph.D. Thesis. Wageningen University, Netherland.
[44] Ahmadi, K., Sefidkon, F. & Assareh, M. H. 2008. The effects of different drying methods on essential oil content and composition of three genotypes of Rosa damascena Mill. Iranian Journal of Medicinal and Aromatic Plants. 24(2): 162-176. (In Farsi)
[45] Khorramdel, S., Shabahang, J. & Asadi, A. G. 2013. Effect of drying methods on drying time, essential oil quantitative and qualitative of some of medicinal plants. Eco-phytochemical Journal of Medical Plants. 1(1): 36-48. (In Farsi)
[46] Ebadi, M. T., Rahmati, M., Azizi, M. & Hassanzadeh-Khayyat, M. 2011. Effects of different drying methods (natural method, oven and microwave) on drying time, essential oil content and composition of Savory (Satureja hortensis L.). Iranian Journal of Medicinal and Aromatic Plants. 26(4): 477-489. (In Farsi)
[47] Nemati, S., Sefidkon, F., & Poorherave, M. 2011. The effects of drying methods on essential oil content and composition of Thymus daenensis Celak. Iranian Journal of Medicinal and Aromatic Plants. 27: 72-80. (In Farsi)
[48] Arslan, D. & Ozcan, M. M. 2012. Evaluation of drying methods with respect to drying kinetics, mineral content and color characteristics of savory leaves. Food and Bioprocess Technology. 5(3): 983-991.
[49] Soysal, Y. 2004. Microwave drying characteristics of parsley. Biosystems Engineering. 89(2): 167-173.
[50] Ebadi, M. T., Rahmati, M., Azizi, M., Hassanzadeh Khayyat, M. & Dadkhah, A. 2013. The effects of different drying methods on drying time, essential oil content andcomposition of basil (Ocimum basilicum L.). Iranian Journal of Medicinal and Aromatic Plants. 29(2): 425–437. (In Farsi)
[51] Maskan, M. 2001. Drying shrinkage and rehydration characteristics of kiwi fruits during hot air and microwave drying, Journal of Food Engineering. 35: 267-280.
[52] Ebadi, M.T., Sefidkon, F., Azizi, M. & Ahmadi, N. 2017. Packaging methods and storage duration affect essential oil content and composition of lemon verbena (Lippia citriodora Kunth.). Food Science & Nutrition. 5: 588-595.
[53] Noori, M., Kashaninejad, M., Daraei Garme Khani, A. & Bolandi, M. 2012. Optimization of drying process of parsley using the combination of hot air and microwave methods. Journal of Food Processing and Preservation. 4(2): 103-122. (In Farsi)
[54] Yektakhah, S. & Mirzaei, H. 2014. The effect of drying method on some quality properties and organoleptic of dates. Third National Conference on Food Science and Technology, Ghoochan, Islamic Azad University, Quchan Branch, 6 p.
[55] Moslemi, M. & Mirzaei, H. 2014. Comparison of hot air and microwave drying on the quality characteristics of apricot, Third National Conference on Food Science and Technology, Ghoochan, Islamic Azad University, Quchan Branch, pp10. (In Farsi)
[56] Sarabiar, S., Tahmasbi, H. A. & Zare Aliabadi, H. 2014. The effect of microwave radiation on the amount of vitamin C IN Kiwi sheets dried in the microwave and residual moisture in it. Third National Conference of Food Science and Technology, Ghoochan, Islamic Azad University, Quchan Branch, pp 4. (In Farsi)
[57] Ostadzadeh, S. H. & Sayyed-Alangi, S. Z. 2016. Effects of drying process on qualitative and quantitative properties of watercress (Nasturtium officinale) leaves. Journal of New Food Technologies. 4(13): 16-1.
[58] Podsędek, A. 2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. Food Science and Technology. 40(1): 1-11.
[59] Ayyobi, H., Peyvast, G. A. & Olfati, J. A. 2014. Effect of drying methods on essential oil yield, total phenol content and antioxidant capacity of peppermint and dill. Journal Ratarstvo i povrtarstvo. 51(1): 18-22.
[60] Gulati, A., Rawat, R., Singh, B. & Ravindranath, S. D. 2003. Application of microwave energy in the manufacture of enhanced quality green tea. Journal of Agricultural and Food & Chemistry. 51(16): 4769-4774.
[61] Tabrizi, L., Dezhabon, F., Mostofi, Y. & farimani, M. M. 2015. Change of physical and chemical factors Calendula officinalis flowers of different Tasyrrvsh drying and Power Plant-professor, former student of master and professor of natural resources. 243-258.
[62] Hayat, Kh., Zhang, X., Farooq, U., Abbas, Sh., Xia, Sh, Jia, Ch., Zhong, F. & Jing, Zh. 2010. Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chemistry. 123(2): 423-429.
[63] Rohn, S., Buchner, N., Driemel, G., Rauser, M. & Kroh, L. W. 2007. Thermal degradation of onion quercetin glucosides under roasting conditions. Journal of Agricultural and Food Chemistry. 55(4): 1568-1573.
[64] Rodrigueza, J., Melob, C. E., Muleta, A. & Bona, J. 2013. Optimization of the antioxidant capacity of thyme (Thymus vulgaris L.) extracts: Management of the convective drying process assisted by power ultrasound, Journal of Food Engineering. 119: 793-799.
[65] Rodríguez, O., Rodríguez, V. J., Simal, S., García-Pérez, V. J., Femenia, A. & Rosselló, C. 2014. Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties, Journal of Food Engineering. 129: 21-29.
[66] Santacatalina, V. J., Contreras, M., Simal, S., Cárcel, A. J. & García-Pérez, V. J. 2016. Impact of applied ultrasonic power on the low temperature drying of apple, Ultrasonics Sonochemistry. 28: 100-109.
[67] Santacatalina, V. J., Rodríguez, O., Simal, S., Cárcel, A. J., Mulet, A. & García-Pérez, V. J. 2014. Ultrasonically enhanced low-temperature drying of apple: Influence on drying kinetics and antioxidant potential, Journal of Food Engineering. 138: 35-44.
[68] Méndez, K. E., Orrego, E. C., Manrique, L. D., Gonzalez, D. J. & Vallejo, D. 2015. Power Ultrasound Application on Convective Drying of Banana (Musa paradisiaca), Mango (Mangifera indica L.) and Guava (Psidium guajava L.), World Academy of Science, Engineering and Technology. 9: 560-565.
[69] Ponmari, G., Sathishkumar, R., Lakshmi, P. T. V., & Annamalai, A. 2011. Effect of drying treatment on the contents of antioxidants in Cardiospermum halicacabum Linn. International Journal of Pharmacy & Biological Sciences. 2(1): 304-313.
[70] Doymaz, I. & Karasu, S. 2018. Effect of air temperature on drying kinetics, colour changes and total phenolic content of sage leaves (Salvia officinalis). Quality Assurance and Safety of Crops & Foods. 10: 269–276.
[71] Tomaino, A., Cimino, F., Zimbalatti, V., Venuti, V., Sulfaro, V., Pasquale, A. & Saija, A. 2005. Influence of heating on antioxidant activity and the chemical composition of some spice essential oils. Food Chemistry. 89(4): 549-554.
[72] Iwansyah, A.C., Manh, T.D., Andriana, Y., Aiman bin Hessan, M., Kormin, F., Cuong, D.X., Xuan Hoan, N., Thai Ha, H., Thi Yen, D., Thinh, P.V., The Hai, L. & Ngoc Minh, T. 2020. Effects of Various Drying Methods on Selected Physical and Antioxidant Properties of Extracts from Moringa oliefera Leaf Waste. Sustainability. 12(20): 8586.
[73] Konopacka, D., Parosa, R., Piecko, J. & Siucińska, K. 2015. Ultrasond &Microwave Hybrid Drying Device for Colored Fruit Preservation – Product Quality and Energy Efficiency, In Proceedings of the 8th Asia-Pacific Drying Conference, (252-258) Kuala- Lumpur, Malaysia.
[74] Kroehnke, J., Radziejewska-Kubzdela, E., Musielak, G. & Stasiak, S. 2015. Ultrasonic Assisted and Microwave -Assisted Convective Drying of Carrot: Drying Kinetics and Quality Analysis, In Proceedings of the 5th European Drying Conference. 195-201.
[75] Omidbeigi, R., Sefidkon, F. & Kazemi, F. 2003. Influence of drying methods on the essential oil composition of Roman Chamomile. Flavour and Fragrance Journal. 19: 196-198.
[76] Khangholi, S., & Rezaeinodehi, A. 2008. Effect of drying temperature on essential oil content and composition of Sweet Wormwood (Artemisia annua) growing wild in Iran, Pakistan Journal of Biological Science. 11: 934-937.
[77] Catania, P., Gaglio, R., Orlando, S., Settanni, L. & Vallone, M. 2020. Design and Implementation of a Smart System to Control Aromatic Herb Dehydration Process. Agriculture. 10, 332.
[78] Mohammadizad, H. A., Mehrafarin, A. & Naghdi Badi, H. 2017. Qualitative and quantitative evaluation of essential oil of Catnip (Nepeta cataria L.) under different drying conditions. Journal of Medicinal Plants and By-products. 16: 8-20. (In Farsi)
[79] Yazdani, D., Shahnazi, S., Jamshidi, A. H., Rezazadeh, S. A. & Mojab, F. 2006. Study on variation of essential oil quality and quantity in dry and fresh herb of thyme and tarragon. Journal of Medicinal Plants. 5(17): 7-15. (In Farsi)