ویژگی‌های کیفی روغن استخراج شده با پرس سرد از دانه بزرک همراه با برگ زیتون آنزیم-بری شده

نویسندگان
1 گروه علوم و صنایع غذایی، واحد ممقان، دانشگاه آزاد اسلامی، ممقان، ایران
2 گروه بهداشت مواد غذایی،دانشکده دامپزشکی، علوم پزشکی تبریز، دانشگاه آزاد اسلامی، تبریز، ایران
3 گروه علوم و صنایع غذایی دانشکده کشاورزی دانشگاه تبریز، تبریز، ایران
4 گروه علوم و صنایع غذایی، دانشکده تغذیه و علوم غذایی، دانشگاه علوم پزشکی و خدمات بهداشتی - درمانی تبریز،تبریز، ایران
چکیده
روغن بزرک بخاطر داشتن مقدار بالایی از اسیدهای چرب چند غیراشباعی حساس به اکسیداسیون می­باشد. یک راهکار می­تواند استفاده از منابع آنتی اکسیدانی طبیعی همچون همچون برگ زیتون باشد. برگ زیتون حاوی آنزیم­های لیپاز و لیپواکسیژناز است که نیاز است قبل از استفاده آنزیم­بری شوند. بنابراین، هدف از این پژوهش، بررسی استخراج روغن با پرس سرد از دانه­های بزرک همراه با برگ­های آنزیم بری شده با بخار در سطوح ( صفر (نمونه کنترل)، 5/2، 5، 5/7 و 10% وزنی/وزنی) می­باشد. اسیدیته، عدد پراکسید، محتوای فنلی، ترکیب اسیدهای چرب، مقدار کلروفیل، مقدار کاروتنوئید و پایداری اکسیداسیونی روغن بزرک استخراج شده در مدت زمان نگهداری مورد بررسی قرار گرفت. نتایج نشان داد که با افزودن سطوح مختلف برگ­های زیتون آنزیم بری شده اسیدیته و عدد پراکسید کاهش و مقدار کاروتنوئید، کلروفیل، محتوای ترکیبات فنلی و پایداری اکسیداسیونی نمونه‌های روغن در سطوح مختلف برگ زیتون آنزیم بری شده نسبت به نمونه کنترل به طور معنادار افزایش یافت(P<0.05). از طرفی طی نگهداری در نمونه­های تیمار شده اسیدیته و عدد پراکسید به طور معنادار (P<0.05) افزایش یافت، هرچند نسبت به نمونه کنترل افزایش کمتری داشتند. همچنین ترکیب اسیدهای چرب نشان داد که با افزودن برگ زیتون آنزیم بری شده اسید لینولنیک در طی نگهداری بیشتر حفظ شد. با توجه به نتایج بدست آمده با افزودن برگ زیتون آنزیم­بری شده، ترکیبات فنولی و پایداری اکسیداتیو روغن تولیدی افزایش و ترکیبات سودمند همچون اسید لینولنیک و کاروتنوئیدها بیشتر حفظ شدند و می­توان روغنی با پایداری مناسب تولید و به بازار مصرف عرضه کرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Qualitative properties of cold pressed oil extracted from flaxseed with blanched olive leaves

نویسندگان English

Ramin Teymouri Okhchlar 1
Afshin Javadi 2
Sodeif Azadmard-Damirchi 3
Mohammad Ali Torbati 4
1 Department of Food Science and Technology, Mamaghan Branch, Islamic Azad University, Mamaghan, Iran
2 Department of Food Hygiene, Faculty of Veterinary, Tabriz Medical Science, Islamic Azad University, Tabriz, Iran
3 Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
4 Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences
چکیده English

Flaxseed oil is sensitive to oxidation due to its high content of polyunsaturated fatty acids. Antioxidant sources such as olive leaves can be used to stabilize it. Olive leaves contain lipase and lipoxygenase enzymes that need to be removed before use. Therefore, the aim of this study was to investigate the extraction of oil by cold pressing of flax seeds with blanched leaves steamed at levels (0 (control sample), 2.5, 5, 7.5 and 10% w­/­w­) is. Acidity, peroxide, phenolic content, fatty acid composition, chlorophyll content, carotenoid content and oxidative stability of extracted flaxseed oil were investigated during storage. The results showed that by adding different levels of blanched olive leaves, the acidity and peroxide number decreased and the amount of carotenoids, chlorophyll, phenolic compounds content and oxidative stability of oil samples in different levels of blanched olive leaves significantly increased compared to the control sample(P <0.05). On the other hand, during the storage period in the treated samples, the acidity and peroxide number of the samples increased significantly (P <0.05) but this increase was less than the control sample. Also, fatty acid profiles showed that by adding blanched olive leaves, the linolenic acid (18: 3) was preserved during further storage. According to the obtained results, it can be said that with the addition of blanched olive leaves, phenolic compounds in the produced oil increased and also oxidative stability increased and beneficial compounds such as linolenic acid and more carotenoids were preserved and a useful oil can be produced and offered to the consumer market.

کلیدواژه‌ها English

Flaxseed
Olive leaf
Blanched
phenolic compounds
[1] Iran Nezhad, H., & Hoseini Mazinani, S. (2017). Investigating the effects of planting date on the performance of three varieties of oil Flax seed in Varamin. Journal of Agricultural Science, 11(4), 10.
[2] Saleem, M. H., Kamran, M., Zhou, Y., Parveen, A., Rehman, M., Ahmar, S., ... & Liu, L. (2020). Appraising growth, oxidative stress and copper phytoextraction potential of flax (Linum usitatissimum L.) grown in soil differentially spiked with copper. Journal of Environmental Management, 257, 109994.
[3] Bekhit, A. E. D. A., Shavandi, A., Jodjaja, T., Birch, J., Teh, S., Ahmed, I. A. M., ... & Bekhit, A. A. (2018). Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatalysis and Agricultural Biotechnology, 13, 129-152.
[4] Shaban, S. N., Mokhtar, K. I., Ichwan, S. J. A., & Al-Ahmad, B. E. M. (2020). Potential Effects of Flaxseed (Linum usitatissimum) in Tissue Reparative Processes: A Mini Review. Journal of Biomedical and Clinical Sciences, 5(1), 1-7.
[5] Popa, G., Cornea, C. P., Luta, G., Gherghina, E., Israel-Roming, F., Bubueanu, C., & Toma, R. (2016). Antioxidant and antimicrobial properties of Laetiporus sulphurous (Bull.) Murrill. AgroLife Scientific Journal, 5(1), 168-173.
[6] Mohanan, A., Nickerson, M. T., & Ghosh, S. (2018). Oxidative stability of flaxseed oil: Effect of hydrophilic, hydrophobic and intermediate polarity antioxidants. Food Chemistry, 266, 524-533.
[7] Hashempour-Baltork, F., Torbati, M., Azadmard-Damirchi, S., & Savage, G. P. (2016). Vegetable oil blending: A review of physicochemical, nutritional and health effects. Trends in Food Science & Technology, 57, 52-58.
[8] Espeso, J., Isaza, A., Lee, J. Y., Sörensen, P. M., Jurado, P., Avena-Bustillos, R. D. J., and Arboleya, J. C. (2021). Olive Leaf Waste Management. Frontiers in Sustainable Food Systems, 5, 162-164.
[9] Cavaca, L. A., López-Coca, I. M., Silvero, G., & Afonso, C. A. (2020). The olive-tree leaves as a source of high-added value molecules: Oleuropein. In Studies in Natural Products Chemistry (Vol. 64, pp. 131-180). Elsevier.
[10] Xanthakis, E., Gogou, E., Taoukis, P., & Ahrné, L. (2018). Effect of microwave assisted blanching on the ascorbic acid oxidase inactivation and vitamin C degradation in frozen mangoes. Innovative Food Science & Emerging Technologies, 48, 248-257.
[11] Baskar, G., Kalavathy, G., Aiswarya, R., & Selvakumari, I. A. (2018). 7 Advances in bio-oil extraction from nonedible oil seeds and algal. Advances in Eco-Fuels for a Sustainable Environment, 187-190.
[12] Cakaloglu, B., Ozyurt, V. H., & Otles, S. (2018). Cold press in oil extraction. A review. Ukrainian food journal, (7, Issue 4), 640-654.
[13] Mazaheri, Y., Torbati, M., Azadmard-Damirchi, S., & Savage, G. P. (2019). A comprehensive review of the physicochemical, quality and nutritional properties of Nigella sativa oil. Food Reviews International, 35(4), 342-362.
[14] Mazaheri, Y., Torbati, M., Azadmard‐Damirchi, S., & Savage, G. P. (2019). Oil extraction from blends of sunflower and black cumin seeds by cold press and evaluation of its physicochemical properties. Journal of Food Processing and Preservation, 43(10), e14154.
[15] Afkhami Sarai, E., & Azadmard-Damirchi, S. (2021). Oil extraction from black cumin seeds incorporated with rosemary leaf by cold screw press and evaluation of some of its qualitative properties. Food Science and Technology, 18(113), 225-232.
[16] Mazaheri, Y., Torbati, M., Azadmard‐Damirchi, S., & Savage, G. P. (2019). Oil extraction from blends of sunflower and black cumin seeds by cold press and evaluation of its physicochemical properties. Journal of Food Processing and Preservation, 43(10), e14154.
[17] Blasi, F., Rocchetti, G., Montesano, D., Lucini, L., Chiodelli, G., Ghisoni, S., ... & Cossignani, L. (2018). Changes in extra-virgin olive oil added with Lycium barbarum L. carotenoids during frying: Chemical analyses and metabolomic approach. Food Research International, 105, 507-516.
[18] Kehili, M., Choura, S., Zammel, A., Allouche, N., & Sayadi, S. (2018). Oxidative stability of refined olive and sunflower oils supplemented with lycopene-rich oleoresin from tomato peels industrial by-product, during accelerated shelf-life storage. Food Chemistry, 246, 295-304.
[19] Corbu, A. R., Rotaru, A., & Nour, V. (2020). Edible vegetable oils enriched with carotenoids extracted from by-products of sea buckthorn (Hippophae rhamnoides ssp. sinensis): The investigation of some characteristic properties, oxidative stability and the effect on thermal behaviour. Journal of Thermal Analysis and Calorimetry, 142(2), 735-747.
[20] Wen, X., Zhu, X., Yu, R., Xiong, J., Gao, D., Jiang, Y., & Yang, G. (2019). Visualization of Chlorophyll Content Distribution in Apple Leaves Based on Hyperspectral Imaging Technology. Agricultural Sciences, 10(6), 783-795.
[21] Hojjati, M. (2021). The qualitative characteristics of the oils prepared in the extraction oil stores in the presence of the customer. Journal of food science and technology (Iran), 17(108), 1-15.
[22] Bajaniya, V. K., Kandoliya, U. K., Bodar, N. H., Bhadja, N. V., & Golakiya, B. A. (2015). Fatty acid profile and phytochemical characterization of bael seed (Aegle marmelos L.) oil. International Journal of Current Microbiology and Applied Sciences, 4(2), 97-102.
[23] Nurseitova, M. A., Amutova, F. B., Zhakupbekova, A. A., Omarova, A. S., Kondybayev, A. B., Bayandy, G. A., ... & Konuspayeva, G. S. (2019). Comparative study of fatty acid and sterol profiles for the investigation of potential milk fat adulteration. Journal of dairy science, 102(9), 7723-7733.
[24] Song, J., Kim, M. J., Kim, Y. J., & Lee, J. (2017). Monitoring changes in acid value, total polar material, and antioxidant capacity of oils used for frying chicken. Food Chemistry, 220, 306-312.
[25] Hashempour-Baltork, F., Torbati, M., Azadmard-Damirchi, S., & Savage, G. P. (2018). Chemical, rheological and nutritional characteristics of sesame and olive oils blended with linseed oil. Advanced pharmaceutical bulletin, 8(1), 107.
[26] Tarchoune, I., Sgherri, C., Eddouzi, J., Zinnai, A., Quartacci, M. F., & Zarrouk, M. (2019). Olive leaf addition increases olive oil nutraceutical properties. Molecules, 24(3), 545.
[27] Ribeiroi, P. P. C., Silva, D. M. D. L., Dantas, M. M., Ribeiro, K. D. D. S., Dimenstein, R., & Damasceno, K. S. F. D. S. C. (2019). Determination of tocopherols and physicochemical properties of faveleira (Cnidoscolus quercifolius) seed oil extracted using different methods. Food Science and Technology, 39, 280-285.
[28] Moczkowska, M., Karp, S., Horbanczuk, O. K., Hanula, M., Wyrwisz, J., & Kurek, M. A. (2020). Effect of rosemary extract addition on oxidative stability and quality of hemp seed oil. Food and Bioproducts Processing, 124, 33-47.
[29] Rodrigues, N., Dias, L. G., Veloso, A. C., Pereira, J. A., & Peres, A. M. (2016). Monitoring olive oils quality and oxidative resistance during storage using an electronic tongue. LWT, 73, 683-692.
[30] Hussain, S. A., Hameed, A., Ajmal, I., Nosheen, S., Suleria, H. A. R., & Song, Y. (2018). Effects of sesame seed extract as a natural antioxidant on the oxidative stability of sunflower oil. Journal of Food Science and Technology, 55(10), 4099-4110.
[31] Monowar, T., Rahman, M., Bhore, S. J., Raju, G., & Sathasivam, K. V. (2019). Secondary metabolites profiling of Acinetobacter baumannii associated with chili (Capsicum annuum L.) leaves and concentration dependent antioxidant and prooxidant properties. BioMed Research International, 2019.
[32] Izadi, S., Honarvar, M., & Mirzaei, H. (2021). Investigation of adding antioxidant compounds extracted from sugar beet leaves by ultrasonic method on oxidative stability of soybean oil. Journal Of Food Science and Technology (Iran), 18(118), 285-296.
[33] Fadavi, A., Kohsari, H., & Hoseini Ghaboos, H. (2016). Antioxidant and antimicrobial characteristics of black Raspberry (Rubus occidentalis) leaves extract and its effect on stability of soybean oil. Journal of Food Science & Technology (2008-8787), 13(51).
[34] Fereidooni Noori, T., Fahim Danesh, M., & Sahari, M. A. (2015). Investigation extraction of rosemary leaves the phenolic compounds by ultrasonic technique and its effect on organoleptic properties, physicochemical and stability of virgin olive oil. Food Science and Technology, 13(53), 113-125.
[35] Yazdanpanah, S., Mohammadi, S., & Elhamirad, A. H. (2021). The Effect of Aqueous Extract of White Tea on Heat Resistance of Sesame Oil Prepared by Cold Pressing. Iranian Food Science and Technology Research Journal. (In press).
[36] Drinić, Z., Mudrić, J., Zdunić, G., Bigović, D., Menković, N., & Šavikin, K. (2020). Effect of pomegranate peel extract on the oxidative stability of pomegranate seed oil. Food Chemistry, 333, 127501.
[37] Hosseinialhashemi, M., Tavakoli, J., Rafati, A., & Ahmadi, F. (2021). The aplication of Pistacia khinjuk extract nanoemulsion in a biopolymeric coating to improve the shelf life extension of sunflower oil. Food Science & Nutrition, 9(2), 920-928.
[38] Krichene, D., Salvador, M. D., & Fregapane, G. (2015). Stability of virgin olive oil phenolic compounds during long-term storage (18 months) at temperatures of 5–50 C. Journal of Agricultural And Food Chemistry, 63(30), 6779-6786.
[39] Karimpour Golsephidi, S., & Azadmard-Damirchi, S. (2021). Extraction of oil from canola seeds incorporated with olive leaves by cold press and evaluation of its qualitative properties. Journal of Food Science and Technology (Iran), 17(107), 161-169.
[40] Ribeiro, D., Freitas, M., Silva, A. M., Carvalho, F., & Fernandes, E. (2018). Antioxidant and pro-oxidant activities of carotenoids and their oxidation products. Food and Chemical Toxicology, 120, 681-699.
[41] Salami, A., Asefi, N., Kenari, R. E., & Gharekhani, M. (2020). Addition of pumpkin peel extract obtained by supercritical fluid and subcritical water as an effective strategy to retard canola oil oxidation. Journal of Food Measurement and Characterization, 14, 2433-2442.
[42] Markhali, F. S., Teixeira, J. A., & Rocha, C. M. (2020). Olive tree leaves—A source of valuable active compounds. Processes, 8(9), 1177-1181.
[43] Şahin, S., Sayım, E., & Bilgin, M. (2017a). Effect of olive leaf extract rich in oleuropein on the quality of virgin olive oil. Journal of food science and technology, 54(6), 1721-1728.
[44] Maszewska, M., Florowska, A., Dłużewska, E., Wroniak, M., Marciniak-Lukasiak, K., & Żbikowska, A. (2018). Oxidative stability of selected edible oils. Molecules, 23(7), 1746-1749.
[45] Kozłowska, M., & Gruczyńska, E. (2018). Comparison of the oxidative stability of soybean and sunflower oils enriched with herbal plant extracts. Chemical Papers, 72(10), 2607-2615.
[46] Chupeerach, C., Aursalung, A., Watcharachaisoponsiri, T., Whanmek, K., Thiyajai, P., Yosphan, K., ... & Suttisansanee, U. (2021). The effect of steaming and fermentation on nutritive values, antioxidant activities, and inhibitory properties of tea leaves. Foods, 10(1), 117-121.
[47] Şahin, S., Bilgin, M., Sayım, E., & Güvenilir, B. (2017b). Effects of natural antioxidants in the improvement of corn oil quality: olive leaf vs. lemon balm. International Journal of Food Science & Technology, 52(2), 374-380.
[48] Estakhr, P., Tavakoli, J., Beigmohammadi, F., Alaei, S., & Mousavi Khaneghah, A. (2020). Incorporation of the nanoencapsulated polyphenolic extract of Ferula persica into soybean oil: Assessment of oil oxidative stability. Food Science & Nutrition, 8(6), 2817-2826.
[49] Sharil, A. T. M., Ezzat, M. B., Widya, L., Nurhakim, M. H. A., Hikmah, A. R. N., Zafira, Z. N., & Haris, M. S. (2022). Systematic review of flaxseed (Linum usitatissimum L.) extract and formulation in wound healing. Journal of Pharmacy & Pharmacognosy Research, 10(1), 1-12.