[1] Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Rezagholi, F. (2019). The hydrocolloid extracted from Plantago major seed: Effects on emulsifying and foaming properties. Journal of Dispersion Science and Technology, 41(5), 667 – 673.
[2] Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Rezagholi, F. (2020). Barhang (Plantago major L.) seed gum: Ultrasound-assisted extraction optimization, characterization and biological activities. Journal of Food Processing and Preservation. DOI: 10.1111/jfpp.14750.
[3] Jiang, Y., Koteswara Reddy, C., Huang, K., Chen, L., & Xu, B. (2019). Hydrocolloidal properties of flaxseed galactomannan / konjac glucomannan compound gel. International Journal of Biological Macromolecules, 133, 1156 – 1163.
[4] Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Rezagholi, F. (2018). The effects of Plantago major seed gum on steady and dynamic oscillatory shear rheology of sunflower oil-in-water emulsions. Journal of Texture Studies, 49(5), 536 – 547.
[5] Wang, P., Luo, J., Wang, X.B., Fan, B.Y., & Kong, L.Y. (2015). New indole glucosides as biosynthetic intermediates of camptothecin from the fruits of Camptotheca acuminate. Fitoterapia, 103, 1 – 8.
[6] Rashid, F., Hussain, S., & Ahmed, Z. (2018). Extraction purification and characterization of galactomannan from fenugreek for industrial utilization. Carbohydrate Polymers, 180, 88 – 95.
[7] Bakhshy, E., Zarinkamar, F., & Nazari, M. (2019). Isolation, qualitative and quantitative evaluation of galactomannan during germination of Trigonella persica (Fabaceae) seed. International Journal of Biological Macromolecules, 137, 286 – 295.
[8] Niknam, R., Ghanbarzadeh, B., Ayaseh, A., & Hamishehkar, H. (2019). Plantago major seed gum based biodegradable films: Effects of various plant oils on microstructure and physicochemical properties of emulsified films. Polymer Testing, 77, 105868.
[9] Zhao, Y., Yang, J., Liu, Y., Zhao, M., & Wang, J. (2018). Ultrasound assisted extraction of polysaccharides from Lentinus edodes and its anti-hepatitis B activity in vitro. International Journal of Biological Macromolecules, 107, 2217 – 2223.
[10] Gupta, S.K., Kalaiselvan, V., Srivastava, S., Saxena, R., & Agrawal, S.S. (2010). Trigonella foenum – graecum (Fenugreek) protects against selenite – induced oxidative stress in experimental cataractogenesis. Biological Trace Element Research, 136 (3), 533 – 542.
[11] Niknam, R., Mousavi, M., & Kiani, H. (2020). New studies on galactomannan extracted from Trigonella foenum – graceum (fenugreek) seed: Effect of subsequent use of ultrasound and microwave on the physicochemical and rheological properties. Food and Bioprocess Technology, 13(5), 882 – 900.
[12] M. Busch, V., A. Kolender, A., R. Santagapita, P., & Buera, P. (2015). Vinal gum, a galactomannan from Prosopis ruscifolia seeds: Physicochemical characterization. Food Hydrocolloids, 51, 495 – 502.
[13] Shaheen, U., A. Ragab, E., N. Abdalla, A., & Bader, A. (2018). Triterpenoidal saponins from the fruits of Gleditsia caspica with proapoptotic properties. Phytochemistry, 145, 168 – 178.
[14] Liyanage, S., Abidi, N., Auld, D., & Moussa, H. (2015). Chemical and physical characterization of galactomannan extracted from guar cultivars (Cyamopsis tetragonolobus L.). Industrial Crops and Products, 74, 388 – 396.
[15] Guo, X., Shang, X., Zhou, X., Zhao, B., & Zhang, J. (2017). Ultrasound-assisted extraction of polysaccharides from Rhododendron aganniphum: Antioxidant activity and rheological properties. Ultrasonics Sonochemistry, 38, 246 – 255.
[16] Sun, M., Sun, Y., Li, Y., Liu, Y., Liang, J., & Zhang, Z. (2018). Physical properties and antidiabetic potential of a novel galactomannan from seeds of Gleditsia japonica var. delavayi. Journal of Functional Foods, 46, 546 – 555.
[17] Roohi, R., Abedi, E., Hashemi, S.M.B., Marszalek, K., Lorenzo, J., & Barba, F. (2019). Ultrasound-assisted bleaching: Mathematical and 3D computational fluid dynamics simulation of ultrasound parameters on microbubble formation and cavitation structures. Innovative Food Science and Emerging Technologies, 55, 66 – 79.
[18] Gorgani, L., Mohammadi, M., D.Najafpour, G., & Nikzad, M. (2017). Sequential microwave-ultrasound-assisted extraction of piperine from black pepper (Piper nigrum L.). Food and Bioprocess Technology, 10, 2199 – 2207.
[19] Zheng, Q., Ren, D., Yang, N., & Yang, X. (2016). Optimization of ultrasound-assisted extraction of polysaccharides with chemical composition and antioxidant activity from the Artemisia sphaerocephala Krasch seeds. International Journal of Biological Macromolecules, 91, 856 – 866.
[20] Hamedi, F., Mohebbi, M., Shahidi, F., & Azarpazhooh, E. (2018). Ultrasound-assisted osmotic treatment of model food impregnated with pomegranate peel phenolic compounds: Mass transfer, texture and phenolic evaluations. Food and Bioprocess Technology, 11, 1061 – 1074.
[21] Lu, X., Zheng, Z., Li, H., Cao, R., Zheng, Y., Yu, H., Xiao, J., Miao, S., & Zheng, B. (2017). Optimization of ultrasonic – microwave assisted extraction of oligosaccharides from lotus (Nelumbo nucifera Gaertn.) seeds. Industrial Crops and Products, 107, 546 – 557.
[22] Kiani, H., & Sun, D.W. (2016). Numerical modeling of particle to fluid heat transfer during ultrasound assisted immersion cooling. Chemical Engineering & Processing: Process Intensification, 99, 25 – 32.
[23] Homayoonfal, M., Mousavi, S.M., Kiani, H., Askari, GH., Khani, M., Rezazad, M., & Alizadeh, M. (2018). The use of an innovative inverse numerical modeling method for the evaluation and parameter estimation of barberry anthocyanins ultrasound assisted extraction. Chemical Engineering & Processing: Process Intensification, 133, 1 – 11.
[24] Fabbri, A., Cevoli, C., & Troncoso, R. (2014). Moisture diffusivity coefficient estimation in solid food by inversion of a numerical model. Food Research International, 56, 63 – 67.
[25] Currenti, G., Negro, C., & Nunnari, G. (2005). Inverse modeling of volcanomagnetic fields using a genetic algorithm technique. Geophysical Journal International, 163, 403 -418.
[26] Anderson, B., & Singh, P. (2006). Effective heat transfer coefficient measurement during air impingement thawing using an inverse method. International Journal of Refrigeration, 29(2), 281 – 293.
[27] Fabbri, A., & Cevoli, C. (2016). Rheological z finite elements model inversion. Journal of Food Engineering, 169, 172 – 178.
[28] Niknam, R., Mousavi, M., & Kiani, H. (2021). intrinsic viscosity, steady and oscillatory shear rheology of a new source of galactomannan isolated from Gleditsia caspica (Persian honey locust) seeds in aqueous dispersions. European Food Research and Technology, 247 (10), 2579 – 2590.
[29] Kiani, H., Hojjatoleslamy, M., & Mousavi, M. (2016). Data reduction of a numerically simulated sugar extraction process in counter-current flow horizontal extraction. Journal of Agricultural Science and Technology, 18(3), 615 – 627.
[30] Tramontin, D., Alves, A., Bolzan, A., & Quadri, M. (2021). Mathematical modeling and numerical simulation of the extraction of bioactive compounds from Artocarpus heterophyllus with supercritical CO2. The Journal of Supercritical Fluids, 177, 105353.
[31] Yuan, Y., Tan, L., Xu, Y., Yuan, Y., & Dong, J. (2019). Numerical and experimental study on drying shrinkage-deformation of apple slices during process of heat-mass transfer. International Journal of Thermal Sciences, 136, 539 – 548.
[32] Sajjadi, B., Asgharzadehahmadi, S., Asaithambi, P., Abdul Raman, A., & Parthasarathy, R. (2017). Investigation of mass transfer intensification under power ultrasound irradiation using 3D computational simulation: A comparative study. Ultrasonics Sonochemistry, 34, 504 – 518.
[33] Sorourian, R., Khajehrahimi, A., Tadayoni, M., Azizi, M.H., & Hojjati, M. (2020). Ultrasound-assisted extraction of polysaccharides from Typha domingensis: Structural characterization and functional properties. International Journal of Biological Macromolecules, 160, 758 – 768.
[34] Niknam, R., Mousavi, M., & Kiani, H. (2021). A new source of galactomannan isolated from Gleditsia caspica (Persian honey locust) seeds: Extraction and comprehensive characterization. Journal of Food Processing and Preservation, e15774.
[35] Jiang, C., Li, X., Jiao, Y., Jiang, D., Zhang, L., Fan, B., & Zhang, Q. (2014). Optimization for ultrasound-assisted extraction of polysaccharides with antioxidant activity in vitro from the aerial root of Ficus microcarpa. Carbohydrate Polymers, 110, 10 – 17.
[36] Kiani, H., Sun, D., Delgado, A., & Zhang, Z. (2012). Investigation of the effect of power ultrasound on the nucleation of water during freezing of agar gel samples in tubing vials. Ultrasonics Sonochemistry, 19, 576 – 581.
[37] Mtetwa, M., Qian, L., Zhu, H., Cui, F., Zan, X., Sun, W., Wu, D., & Yang. Y. (2020). Ultrasound-assisted extraction and antioxidant activity of polysaccharides from Acanthus ilicifolius. Journal of Food Measurement and Characterization, 14, 1223 – 1235.
[38] Miano, A., Ibarz, A., & Augusto, A. (2016). Mechanisms for improving mass transfer in food with ultrasound technology: Describing the phenomena in two model cases. Ultrasonics Sonochemistry, 29, 413 – 419.
[39] Pinelo, M., Zornoza, B., & Meyer, A. (2008). Selective release of phenols from apple skin: Mass transfer kinetics during solvent and enzyme-assisted extraction. Separation and Purification Technology, 63(3), 620 – 627.
[40] Goula, A. (2013). Ultrasound-assisted extraction of pomegranate seed oil – Kinetic modeling. Journal of Food Engineering, 117, 492 – 498.
[41] Fabbri, A., & Cevoli, C. (2015). 2D water transfer finite elements model of salami drying, based on real slice image and simplified geometry. Journal of Food Engineering, 158, 73 – 79.
[42] Xu, Z., Wu, J., Zhang, Y., Hu, X., Liao, X., & Wang, Z. (2010). Extraction of anthocyanins from red cabbage using high pressure CO2. Bioresource Technology, 101 (18), 7151 – 7157.
[43] Abrahamsson, V., Andersson, N., Nilsson, B., & Turner, C. (2016). Method development in inverse modeling applied to supercritical fluid extraction of lipids. The Journal of Supercritical Fluids, 111, 14 – 27.
[44] Kiani, H., Karimi, F., Labbafi, M., & Fathi, M. (2018). A novel inverse numerical modeling method for the estimation of water and salt mass transfer coefficients during ultrasonic assisted-osmotic dehydration of cucumber cubes. Ultrasonic Sonochemistry, 44, 171 – 176.
[45] Cisse, M., Vaillant, F., Acosta, O., Mayer, C., & Dornier, M. (2009). Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the Arrhenius, eyring, and ball models. Journal of Agricultural and Food Chemistry, 57, 6285 – 6291.
[46] Tao, Y., Zhang, Z., & Sun, D. (2014). Experimental and modeling studies of ultrasound-assisted release of phenolics from oak chips into model wine. Ultrasonics Sonochemistry, 21, 1839 – 1848.
[47] Carrera, C., Ruiz-Rodriguez, A., Palma, M., & Barroso, C.G. (2012). Ultrasound assisted extraction of phenolic compounds from grapes. Analytica Chimica Acta, 732, 100 – 104.
[48] Wang, X.S., Wu, Y.F., Dai, S.L., Chen, R., & Shao, Y. (2012). Ultrasound-assisted extraction of geniposide from Gardenia jasminoids. Ultrasonics Sonochemistry, 19, 1155 – 1159.
[49] Lazar, I., Talmaciu, A.I., Volf, I., & Popa, V.I. (2016). Kinetic modeling of the ultrasound-assisted extraction of polyphenols from Picea abies bark. Ultrasonics Sonochemistry, 32, 191 – 197.