[1] Tunick, M.H., Mackey, K. L., Smith, P.W. & Holsinger, V.H. (1991). Effects of composition and storage on the texture of Mozzarella cheese. Netherland Milk Dairy Journal, 45, 117-125.
[2] Tunick, M. H., Mackey, K. L., Shieh, J. J., Smith, P. W., Cooke, P., & Malin, E. L. (1993a). Rheology and microstructure of low-fat Mozzarella cheese. International Dairy Journal, 3(7), 649-662.
[3] Tunick, M. H., Malin, E. L., Smith, P. W., Shieh, J. J., Sullivan, B. C., Mackey, K. L., & Holsinger, V. H. (1993b). Proteolysis and rheology of low fat and full fat Mozzarella cheeses prepared from homogenized Milk1. Journal of Dairy Science, 76(12), 3621-3628.
[4] Malin, L., & Tunick, M. H. (1995). Chemistry of Structure-function relationships in cheese. Springer Science, Chapter 2, Rheology of reduced-fat Mozzarella cheese. p. 7-21.
[5] Rodriguez, J. (1998). Recent advances in the development of low fat cheeses. Trends in Food Science and Technology, 9, 249–254.
[6] Jenkins, D. J. A., Kendall, C. W. C., & Ransom, T. P. P. (1998). Dietary fibre, the evolution of the human diet and coronary heart disease. Nutrition Research, 18, 633–652.
[7] Jenkins, D. J. A., Kendall, C. W. C., & Vuksan, V. (1999). Inulin, oligofructose and intestinal function. Journal of Nutrition, 129, 1431–1433.
[8] Laws, A. P., Marshall, V. M. (2001). The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy Strains of lactic acid bacteria. International Dairy Journal, 11, 709-721.
[9] S. Mende, M. Peter, K. Bartels, H. Rohm, D. Jaros, Addition of purified exopolysaccharides isolates from S. thermophilus to milk and their impact on the rheology of acid gels, Food Hydrocoll. 32 (2013) 178-185.
[10] A. Ketabi, S. Soleimanian-Zad, M. Kadivar, M. Sheikh-Zeinoddin, Production of microbial exopolysaccharides in the sourdough and its effects on the rheological properties of dough, Food Res Int. 41 (2008) 948-951.
[11] I.W. Sutherland, Novel and established applications of microbial polysaccharides, Trends Biotechnol. 16 (1998) 41-46.
[12] J. Cerning, Exocellular polysaccharides produced by lactic acid bacteria, FEMS Microbiol. 7 (1990) 113-130.
[13] L. De Vuyst, F. De Vin, F. Vaningelgem, B. Degeest, Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria, Int Dairy J. 11 (2001) 687-707.
[14] B. Degeest, L. De Vuyst, Correlation of activities of the enzymes α-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03, Appl Environ Microbiol. 66 (2000) 3519-3527.
[15] F. Donot, A. Fontana, J.C. Baccou, S. Schorr-Galindo, Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction, Carbohydrate Polymers. 87 (2012) 951-962.
[16] AbbasAbedfar, Marzieh Hosseininezhad, Ali, Rafe (2020). Effect of microbial exopolysaccharide on wheat bran sourdough: Rheological, thermal and microstructural characteristics. International Journal of Biological Macromolecules Volume 154, Pages 371-379.
[17] Mitsue, T., Tachibana, K., Hara, T. & Fujio, Y. (1999). Isolation of kefiran-producing lactic acid bacteria from kefir grain and improvement of kefiran productivity. Seibutsu Kagaku, 76, 447–450.
[18] Rodrigues, K. L., Caputo, L. R., Carvalho, J. C.,Evangelista, J. & Schneedorf, J. M. (2005). Antimicrobial and healing activity of kefir and kefiran extract. International Journal of Antimicrobial Agents, 25, 404-408.
[19] Ninane, V., Berben, G., Romne, J. M. & Oger, R. (2005). Variability of the microbial abundance of kefir grain starter cultivated in partially controlled conditions. Biotechnology Agronomy Society Environment, 9, 191-194.
[20] Siavash Saei‐Dehkordi, S., Fallah, A. A., Heidari-Nasirabadi, M., & Moradi, M. (2012). Chemical composition, antioxidative capacity and interactive antimicrobial potency of Satureja khuzestanica Jamzad essential oil and antimicrobial agents against selected food-related microorganisms. International journal of food science & technology, 47(8), 1579-1585.
[21] Habibi, P. Ziaei, A., Khodaeian, M. (2016). Effect of walnut oil and keffiran on the textural and rheological properties of ice cream. Food Technology and Nutrition. 13(4), 59-70.
[22] Hajei, M., Kodaeian, F., Rezvan, P. (2017). The effect of kefiran as a fat replacer on physicochemical properties, sensory and microbial stirred fruit yoghurt. Iranian Journal of Biosystem Engineering. 48(4), 427-433.
[23] Guzel-Seydim, Z. B., Kok-Tas, T., Greene, A. K., & Seydim, A. C. (2011). Functional properties of kefir. Critical reviews in food science and nutrition, 51(3), 261-268.
[24] Chen, C., Wolle, D., & Sommer, D. (2008). Mozzarella. In The sensory evaluation of dairy products (pp. 459-487). Springer, New York, NY.
[25] Booth, D. A., & Shepherd, R. (1988). Sensory influences on food acceptance:—the neglected approach to nutrition promotion. Nutrition Bulletin, 13(1), 39-54.
[26] Aziznia, S., Khosrowshahi, A., Madadlou, A. & Rahimi, J. (2008). Whey protein concentrate and gum tragacanth as fat replacers in nonfat yogurt: Chemical, physical, and microstructural properties. Journal of Dairy Science, 91, 2545-2552.
[27] Mortazavi, A., Kashaninejad, M. & Ziaolhagh, H. (2003). Food microbiology. Ferdowsi University Press. 685p. (In Farsi).
[28] Li, H., Liu, Y., Sun, Y., Li, H., Yu, J., Properties of polysaccharides and glutamine transaminase used in mozzarella cheese as texturizer and crosslinking agents, LWT – Food Science and Technology (2018), doi: https://doi.org/10.1016/j.lwt.2018.10.011.
[29] Tunick, M. H., Malin, E. L., Smith, P. W., Shieh, J. J., Sullivan, B. C., Mackey, K. L., & Holsinger, V.
413 H. (1993). Proteolysis and Rheology of Low Fat and Full Fat Mozzarella Cheeses Prepared from
414 Homogenized Milk 1. Journal of Dairy Science, 76(12), 3621-3628.
[30] Alinovi, M., Wiking, L., Corredig, M., & Mucchetti, G. (2020). Effect of frozen and refrigerated storage on proteolysis and physicochemical properties of high-moisture citric mozzarella cheese. Journal of Dairy Science, 103(9), 7775-7790.
[31] Van Hekken, D. L., Tunick, M. H., Malin, E. L., & Holsinger, V. H. (2007). Rheology and melt characterization of low-fat and full fat Mozzarella cheese made from microfluidized milk. LWT-Food Science and Technology, 40(1), 89-98.
[32] Alinovi, M., Wiking, L., Corredig, M., & Mucchetti, G. (2020). Effect of frozen and refrigerated storage on proteolysis and physicochemical properties of high-moisture citric mozzarella cheese. Journal of Dairy Science, 103(9), 7775-7790.
[33] Tidona, F., Alinovi, M., Francolino, S., Brusa, G., Ghiglietti, R., Locci, F., ... & Giraffa, G. (2020). Partial substitution of 40 g/100 g fresh milk with reconstituted low heat skim milk powder in high-moisture mozzarella cheese production: Rheological and water-related properties. LWT, 110391.