بررسی اثر اینولین/کفیران بر ویژگی‌های فیزیکوشیمیایی، حسی و بافتی پنیر موزارلای کم چرب

نویسندگان
1 دانشجوی دکتری، گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران
2 2. گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران
3 گروه علوم و صنایع غذایی، واحد قوچان، دانشگاه آزاد اسلامی، قوچان، ایران
4 دانشیار، گروه فرآوری مواد غذایی، موسسه علوم و صنایع غذایی، مشهد، ایران
چکیده
تولید و مصرف به افزایش محصولات غذایی آماده مصرف مانند پیتزاها و کاهش فعالیت­های بدنی روزمره نیاز به کاهش کالری و چربی غذایی را افزایش داده است. بر این اساس، تولید پنیر موزارلای کم چرب از طریق جایگزینی با پلی­ساکاریدهای مفید میکروبی مانند کفیران و فیبرهای رژیمی نظیر اینولین می­تواند کمک موثری باشد. لذا، در این تحقیق اثر افزودن اینولین در غلظت­های 6 و 7 درصد و کفیران در غلظت­های 6/0 و 7/0 درصد مورد بررسی قرار گرفت و آزمون­های فیزیکوشیمیایی، پارامترهای رنگی و ویژگیهای بافتی پنیر تحت تاثیر افزودن اینولین/کفیران مورد آزمایش قرار گرفت. نتایج نشان داد که در نمونه با نسبت اینولین به کفیران 10:1 بیشترین تغییر روی اسیدیته و pH را داشتیم، در حالیکه افزایش مقدار کفیران تأثیری روی اسیدیته نداشته که این مساله می­تواند به دلیل ساختار خنثی پلی ساکارید کفیران باشد. در بررسی میزان ماده خشک پنیر، افزودن اینولین/کفیران تاثیر معنی­داری روی نتایج نشان نداد (P<0.05). در مقابل میزان ذوب شدگی در نمونه شاهد بیشترین و در نمونه B (کمترین نسبت اینولین به کفیران) کمترین بود. به عبارتی، افزودن اینولین/کفیران تاثیری بر میزان ذوب شدگی پنیر نشان نداد. در بررسی ویژگی­های رنگی پنیر موزارلا با تغییر سطح اینولین به کفیران تغییری در میزان روشنایی، *a و *b مشاهده نشد. هرچند در تغییرات کلی رنگ بیشترین تغییر در نمونه A و کمترین تغییر رنگ در نمونه شاهد مشاهد شد. همچنین، افزودن اینولین و کفیران تاثیر معنی­داری بر ویژگی­های ارگانولپتیکی و بافتی پنیر موزارلا نداشته است. بنابراین، امکان استفاده از این ترکیب در فرمولاسیون پنیر موزارلا بدون ایجاد تغییرات نامطلوب در محصول وجود دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of inulin/kefiran on the physicochemical, sensorial and textural properties of Mozzarella cheese

نویسندگان English

Naser Moghiseh 1
Akram Arianfar 2
Esmaeil Ataye salehi 3
Ali Rafe 4
1 Ph.D student, Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan,Iran
2 Department of Food Science and Technology, Quchan Branch, Islamic Azad University,Quchan,Iran
3 Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan,Iran
4 Associate Professor, Department of Food Processing, Research Institute of Food Science and Technology, Mashhad, Iran
چکیده English

. Production and consumption Increased consumption of ready-to-eat foods such as pizzas and reduced daily physical activity has increased the need to reduce calories and dietary fat. In this study, the effect of adding inulin at concentrations of 6 and 7% and kefir at concentrations of 0.6 and 0.7% was investigated and physicochemical tests, color parameters and textural properties of cheese affected by the addition of inulin / Kefirs were examined. The results showed that in the sample with a ratio of inulin to kefir of 10: 1 had the most change in acidity and pH, while increasing the amount of kefir had no effect on acidity, which could be due to the neutral structure of kefir polysaccharide. In the study of cheese dry matter, the addition of inulin / kefir did not show a significant effect on the results (P <0.05). In contrast, the melting area was the highest in the control sample and the lowest in sample B (the lowest ratio of inulin to kefir). In other words, the addition of inulin / kefir did not show any effect on the melting area of the cheese. In examining the color characteristics of mozzarella cheese, by changing the level of inulin to kefir, no change in brightness, a* and b* was observed. However, in general color changes, the most change were observed in sample A and the least color change was observed in control. Also, the addition of inulin and kefir did not have a significant effect on the organoleptic and textural properties of mozzarella cheese. Therefore, it is possible to use this combination in the formulation of mozzarella cheese without making undesirable changes in the product

کلیدواژه‌ها English

Mozarella cheese
Inulin
Kefiran
texture
sensory
[1] Tunick, M.H., Mackey, K. L., Smith, P.W. & Holsinger, V.H. (1991). Effects of composition and storage on the texture of Mozzarella cheese. Netherland Milk Dairy Journal, 45, 117-125.
[2] Tunick, M. H., Mackey, K. L., Shieh, J. J., Smith, P. W., Cooke, P., & Malin, E. L. (1993a). Rheology and microstructure of low-fat Mozzarella cheese. International Dairy Journal, 3(7), 649-662.
[3] Tunick, M. H., Malin, E. L., Smith, P. W., Shieh, J. J., Sullivan, B. C., Mackey, K. L., & Holsinger, V. H. (1993b). Proteolysis and rheology of low fat and full fat Mozzarella cheeses prepared from homogenized Milk1. Journal of Dairy Science, 76(12), 3621-3628.
[4] Malin, L., & Tunick, M. H. (1995). Chemistry of Structure-function relationships in cheese. Springer Science, Chapter 2, Rheology of reduced-fat Mozzarella cheese. p. 7-21.
[5] Rodriguez, J. (1998). Recent advances in the development of low fat cheeses. Trends in Food Science and Technology, 9, 249–254.
[6] Jenkins, D. J. A., Kendall, C. W. C., & Ransom, T. P. P. (1998). Dietary fibre, the evolution of the human diet and coronary heart disease. Nutrition Research, 18, 633–652.
[7] Jenkins, D. J. A., Kendall, C. W. C., & Vuksan, V. (1999). Inulin, oligofructose and intestinal function. Journal of Nutrition, 129, 1431–1433.
[8] Laws, A. P., Marshall, V. M. (2001). The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy Strains of lactic acid bacteria. International Dairy Journal, 11, 709-721.
[9] S. Mende, M. Peter, K. Bartels, H. Rohm, D. Jaros, Addition of purified exopolysaccharides isolates from S. thermophilus to milk and their impact on the rheology of acid gels, Food Hydrocoll. 32 (2013) 178-185.
[10] A. Ketabi, S. Soleimanian-Zad, M. Kadivar, M. Sheikh-Zeinoddin, Production of microbial exopolysaccharides in the sourdough and its effects on the rheological properties of dough, Food Res Int. 41 (2008) 948-951.
[11] I.W. Sutherland, Novel and established applications of microbial polysaccharides, Trends Biotechnol. 16 (1998) 41-46.
[12] J. Cerning, Exocellular polysaccharides produced by lactic acid bacteria, FEMS Microbiol. 7 (1990) 113-130.
[13] L. De Vuyst, F. De Vin, F. Vaningelgem, B. Degeest, Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria, Int Dairy J. 11 (2001) 687-707.
[14] B. Degeest, L. De Vuyst, Correlation of activities of the enzymes α-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03, Appl Environ Microbiol. 66 (2000) 3519-3527.
[15] F. Donot, A. Fontana, J.C. Baccou, S. Schorr-Galindo, Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction, Carbohydrate Polymers. 87 (2012) 951-962.
[16] AbbasAbedfar, Marzieh Hosseininezhad, Ali, Rafe (2020). Effect of microbial exopolysaccharide on wheat bran sourdough: Rheological, thermal and microstructural characteristics. International Journal of Biological Macromolecules Volume 154, Pages 371-379.
[17] Mitsue, T., Tachibana, K., Hara, T. & Fujio, Y. (1999). Isolation of kefiran-producing lactic acid bacteria from kefir grain and improvement of kefiran productivity. Seibutsu Kagaku, 76, 447–450.
[18] Rodrigues, K. L., Caputo, L. R., Carvalho, J. C.,Evangelista, J. & Schneedorf, J. M. (2005). Antimicrobial and healing activity of kefir and kefiran extract. International Journal of Antimicrobial Agents, 25, 404-408.
[19] Ninane, V., Berben, G., Romne, J. M. & Oger, R. (2005). Variability of the microbial abundance of kefir grain starter cultivated in partially controlled conditions. Biotechnology Agronomy Society Environment, 9, 191-194.
[20] Siavash Saei‐Dehkordi, S., Fallah, A. A., Heidari-Nasirabadi, M., & Moradi, M. (2012). Chemical composition, antioxidative capacity and interactive antimicrobial potency of Satureja khuzestanica Jamzad essential oil and antimicrobial agents against selected food-related microorganisms. International journal of food science & technology, 47(8), 1579-1585.
[21] Habibi, P. Ziaei, A., Khodaeian, M. (2016). Effect of walnut oil and keffiran on the textural and rheological properties of ice cream. Food Technology and Nutrition. 13(4), 59-70.
[22] Hajei, M., Kodaeian, F., Rezvan, P. (2017). The effect of kefiran as a fat replacer on physicochemical properties, sensory and microbial stirred fruit yoghurt. Iranian Journal of Biosystem Engineering. 48(4), 427-433.
[23] Guzel-Seydim, Z. B., Kok-Tas, T., Greene, A. K., & Seydim, A. C. (2011). Functional properties of kefir. Critical reviews in food science and nutrition, 51(3), 261-268.
[24] Chen, C., Wolle, D., & Sommer, D. (2008). Mozzarella. In The sensory evaluation of dairy products (pp. 459-487). Springer, New York, NY.
[25] Booth, D. A., & Shepherd, R. (1988). Sensory influences on food acceptance:—the neglected approach to nutrition promotion. Nutrition Bulletin, 13(1), 39-54.
[26] Aziznia, S., Khosrowshahi, A., Madadlou, A. & Rahimi, J. (2008). Whey protein concentrate and gum tragacanth as fat replacers in nonfat yogurt: Chemical, physical, and microstructural properties. Journal of Dairy Science, 91, 2545-2552.
[27] Mortazavi, A., Kashaninejad, M. & Ziaolhagh, H. (2003). Food microbiology. Ferdowsi University Press. 685p. (In Farsi).
[28] Li, H., Liu, Y., Sun, Y., Li, H., Yu, J., Properties of polysaccharides and glutamine transaminase used in mozzarella cheese as texturizer and crosslinking agents, LWT – Food Science and Technology (2018), doi: https://doi.org/10.1016/j.lwt.2018.10.011.
[29] Tunick, M. H., Malin, E. L., Smith, P. W., Shieh, J. J., Sullivan, B. C., Mackey, K. L., & Holsinger, V.
413 H. (1993). Proteolysis and Rheology of Low Fat and Full Fat Mozzarella Cheeses Prepared from
414 Homogenized Milk 1. Journal of Dairy Science, 76(12), 3621-3628.
[30] Alinovi, M., Wiking, L., Corredig, M., & Mucchetti, G. (2020). Effect of frozen and refrigerated storage on proteolysis and physicochemical properties of high-moisture citric mozzarella cheese. Journal of Dairy Science, 103(9), 7775-7790.
[31] Van Hekken, D. L., Tunick, M. H., Malin, E. L., & Holsinger, V. H. (2007). Rheology and melt characterization of low-fat and full fat Mozzarella cheese made from microfluidized milk. LWT-Food Science and Technology, 40(1), 89-98.
[32] Alinovi, M., Wiking, L., Corredig, M., & Mucchetti, G. (2020). Effect of frozen and refrigerated storage on proteolysis and physicochemical properties of high-moisture citric mozzarella cheese. Journal of Dairy Science, 103(9), 7775-7790.
[33] Tidona, F., Alinovi, M., Francolino, S., Brusa, G., Ghiglietti, R., Locci, F., ... & Giraffa, G. (2020). Partial substitution of 40 g/100 g fresh milk with reconstituted low heat skim milk powder in high-moisture mozzarella cheese production: Rheological and water-related properties. LWT, 110391.