تاثیر شرایط استخراج به کمک فراصوت بر راندمان استخراج و میزان ترکیبات فنولی و توکوفرول روغن سویا

نویسندگان
دانشگاه علوم کشاورزی و منابع طبیعی ساری
چکیده
دانه سویا یکی از منابع مهم روغن­های گیاهی است که در مقیاس تجاری تولید میشود و منبع ترکیباتی نظیر ایزوفلاون ها وترکیبات فنولی است. در این پژوهش ﺗﺎﺛﯿﺮ دو روش اﺳﺘﺨﺮاج ﺑﺎ ﻓﺮاﺻﻮت ﺣﻤﺎم و پروب در دو شدت (50% و 75%) ﺑﺮ ﻣﯿﺰان استخراج ترکیب­های فنولی، آلفا توکوفرول و راندمان استخراج روغن از دانه سویا با استفاده از سه حلال مختلف (هگزان، ایزوپروپانول، و مخلوط حلال­های ایزوپروپانول و هگزان (1:1) در چهار زمان مختلف (30، 60، 90 و 120 دقیقه) بررسی شد. نتایج نشان داد، در روش استخراج به کمک پروب فراصوت، بالاترین راندمان استخراج روغن در شدت %50 و زمان 120 دقیقه با استفاده از حلال هگزان (%41/8) به دست آمد. بالاترین میزان ترکیبات فنولی (g GAE /kg soyben oil 57/1) و توکوفرول ( g α-TocoPherol/kg soyben oil66/2) نیز از پروب فراصوت با شدت %50 با استفاده از حلال ایزوپروپانول در زمان 120 دقیقه بدست آمد. در روش استخراج به کمک حمام فراصوت، بالاترین راندمان استخراج روغن (%76/10) مربوط به زمان 30 دقیقه و مخلوط حلال­های ایزوپروپانول: هگزان (نسبت1:1) بود. در روش استخراج به کمک حمام فراصوت، بالاترین راندمان استخراج روغن (%76/10) مربوط به زمان 30 دقیقه و مخلوط حلال­های ایزوپروپانول :هگزان (نسبت1:1) بود. بالاترین میزان فنل (g GAE /kg soyben oil 48/1) مربوط به حلال ایزوپروپانول در زمان­ 90 دقیقه بود. بالاترین میزان آلفا توکوفرول ( g α-TocoPherol/kg soyben oil68/1) در زمان120دقیقه با استفاده از مخلوط حلال­های ایزوپروپانول: هگزان (1:1) مشاهده شد.در تمامی روش­ها حلال ایزوپروپانول بهترین حلال برای استخراج فنل بود. ﻧﺘﺎیﺞ ایﻦ ﺗﺤﻘﯿﻖ ﻧﺸﺎن داد ﮐﻪ اﺳﺘﺨﺮاج ﺑﻪ ﮐﻤﮏ ﭘﺮوب و ﺣﻤﺎم ﻓﺮاﺻﻮت ﺗﺎﺛﯿﺮ ﻣﺘﻔﺎوﺗﯽ در ﻣﯿﺰان اﺳﺘﺨﺮاج روغن و ﺗﺮﮐﯿﺒﺎت زیﺴﺖ ﻓﻌﺎل دانه سویا داﺷﺖ. در ﻫﺮ روش اﺳﺘﺨﺮاج، ﻣﯿﺰان اﺳﺘﺨﺮاج این ﺗﺮﮐﯿﺒﺎت ﺑﺴﺘﻪ ﺑﻪ ﻧﻮع ﺣﻼل و روش استخراج ﻣﺘﻔﺎوت ﺑﻮد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of ultrasound assisted extraction on extraction efficiency and the amount of phenol and tocopherol compounds of soybean oil

نویسندگان English

vahideh govahian
reza esmaeilzadeh kenari
ZEINAB AMIRI
Sari Agricultural Sciences and Natural Resources university
چکیده English

Soybean seeds are one of the major sources of vegetable oils produced on a commercial scale And the source of compounds such as isoflavones and phenolic compounds. In this study, the effect of two methods of ultrasound assisted extraction bath and probe ultrasound in two intensities (50%w, 75%w) by using three different types of solvents hexane, isopropanol and hexane:isopropanol composition and four levels of sonication time (30, 60, 90 and 120) on total phenolic compounds, alpha-tocopherol and extraction efficiency of soybean oil were investigated. The results showed that the highest oil extraction efficiency (8.41%) was obtained at 50% intensity of probe ultrasound at 120 min by using hexan solvent. The highest phenolic content (1.57 g GAE /kg soyben oil) and tocopherole (2.66 g α-TocoPherol/kg soyben oil) were obtained at 50% intensity of probe ultrasound at 120 min by using isopropanol solvent. In bath ultrasound extraction method the highest extraction efficiency (10.76%) was related to 30 min time of sonication and isopropanol:hexane (1:1) solvent. The highest phenol (1.48 g GAE /kg soyben oil) and tocopherol (1.68 g α-TocoPherol/kg soyben oil) were observed at 90 and 120 min of sonication, isopropanol and isopropanol:hexane solvent respectively. In all extraction methods the isopropanol solvent was the best solvent to extraction phenolic compounds. The results of this study showed that extraction by using bath and probe ultrasound had different effect on extraction oil and bioactive compounds of soybean. In each extraction method the amount of mentioned compounds was related to type of solvent and extraction method.

کلیدواژه‌ها English

bath ultrasound
Prob ultrasound
phenolic compounds
Tocopherol
[1] Serrano, J., Goñi, I. & Saura-Calixto, F. (2006). Food antioxidant capacity determined by chemical methods may underestimate the physiological antioxidant capacity. Food Research International, 40: 15–21.
[2] Chang, C., Yang, M., Wen, H. & Chern, J. (2002). Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. Food and Drug Analysis, 10: 178-182.
[3] Reyhaneh, Sh., Nayebzadeh, K. & Alizadeh, L. (2013). Study Tocopherol Antioxidant Effects Compared to TBHQ on Mayonnaise Oil Oxidation Process. Iranian nutrition and food Technology, 8(4): 135-144.
[4] Demurin, Y., Shoric, D. & Karlovic, D. (1996) cenetic vaviability of tocopherol composithon in Improved oil Guality. Plant brediny 155, 33-36.
[5] Durvic, s., Nikolic, B., Lukovic, N., Jovanovic, J., Stefanovic, A., Sekuljica, N., Mijin, D. & Jogovic, Z. K. (2018). The impact of high-power ultrasound and microwave on the phenolic acid profile and antioxidant activity of the extract from yellow soybean seed. Industrial Crops & Products, 122, 223–231.
[6] Hayouni, A., Abedrabba, M., Bouix, M. & Hamdi, M. (2007). The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chemistry, 105 (3): 1126–1134.
[7] Wang, L. & Weller, C. L. (2006). Recent advances in extraction of nutraceuticals from plants. Trends in Food Science and Technology, 17: 300-312.
[8] Vinatoru, M. (2001). An overview of the ultrasonically assisted extraction of bioactive principles from herbs, Ultrasonics Sono chemistry, 8: 303-313.
[9] Luque-Garcia, J.L. & Luque de Castro, M.D. (2003). Where is microwave based analytical treatment for solid sample pretreatment going? Trends Analays Chemistry, 22: 90–99.
[10] Clodoveo, M. L., & Hbaieb, R. H. (2013). Beyond the traditional virgin olive oil extraction systems: Searching innovative and sustainable plant engineering solutions. Food research international, 54(2), 1926-1933.
[11] Vinatoru, M., Toma, M., Radu, O., Filip, P. I., Lazurca, D., & Mason,T. J. (1997). The use of ultrasound for the extraction of bioactive principles from plant materials. Ultrasonics Sonochemistry, 4(2),135–139.
[12] Li, H., Pordesimo, L., Weiss,J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International, 37: 731–738.
[13] Ivana T. Stanisavljevic., Lazic. M.L. & Veljkovic. V.B. (2007). Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Jornal of Ultrasonics Sonochemistry, 14: 646–652.
[14] Capannesi, Cecilia, et al. (2000). Electrochemical sensor and biosensor for polyphenols detection in olive oils. Food Chemistry, 71.4: 553-562.‏
[15] Wong, M. L., R. E. Timms, and E. M. Goh. (1988). Colorimetric determination of total tocopherols in palm oil, olein and stearin. Journal of the American Oil Chemists' Society, 65.2: 258.
[16] Wu, J., Lidong. L & Foo-tim. Ch., (2001). Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrasonics sonochemistry 8.4 (2001): 347-352.‏
[17] More, N.S. & Gogate. P.R., (2018) . Ultrasound assisted enzymatic degumming of crude soybean oil, J. Food Eng. 218 33–43.
[18] Li, T., Qua. X. Y., Zhang, Q. A. & Wang, Z. Z. (2012). Ultrasound-assisted extraction and profile characteristics of seed oil from Isatis indigotica Fort. Industrial Crops and Products, 35: 98– 104.
[19] Metherel, A. H., Taha, A. Y., Izadi, H. & Stark, K. D. (2009). The application of ultrasound energy to increase lipid extraction throughput of solid matrix samples (flaxseed). Prostaglandins Leukot Essent Fatty Acids, 81, 417–423.
[20] Lanez, T. & Haoua, KB. (2017). The effect of soxhlet and ultrasonic-assisted extraction on antioxidant components and antioxidant properties of selected south Algerian red potatoes cultivars. Chemistry & Chemical Engineering, Biotechnology, Food Industry, 18 (4), 435 – 448.
[21] Khalili, Ma. & Ebrahimzadeh, MA., (2015)A review on antioxidants and some of their common evaluation methods. J Mazandaran Univ Med Sci; 24(120): 188-208 (Persian).
[22] Yousuf, O., Gaibimei, P. & Singh, A., (2018). Ultrasound Assisted Extraction of Oil from Soybean. International Journal of Current Microbiology and Applied Sciences, 7(7): 843-852.
[23] Hossain, M. B., Brunton, N. P., Patras, A., Tiwari, B., O’Donnell, C. P., Martin-Diana, A. B., & Barry-Ryan, C. (2012). Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology. Ultrasonics Sonochemistry, 19(3), 582–590.
[24] Hossain, M. B., Barry-Ryan, C., Martin-Diana, A. B., & Brunton, N. P. (2011). Optimisation of accelerated solvent extraction of antioxidant compounds from rosemary (Rosmarinus officinalis L.), marjoram (Origanum majorana L.) and oregano (Origanum vulgare L.) using response surface methodology. Food Chemistry, 126(1), 339–346.
[25] Ghafoor, K., Choi, Y. H., Jeon, J. Y., & Jo, I. H. (2009). Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. Journal of Agricultural and Food Chemistry, 57(11), 4988–4994.