بهینه سازی فیلم ضد میکروبی و آنتی اکسیدانی گلوتن حاوی اسانس گلپر، نانو ذره ی منیزیم اکسید و پلی پیرول به روش سطح پاسخ

نویسندگان
دانشگاه ارومیه
چکیده
هدف از این مطالعه تهیه فیلم های ضد میکروبی و آنتی اکسیدانی بر پایه گلوتن گندم بود و برای اصلاح ساختار فیلم از اسانس گلپر و نانو ذره ی منیزیم اکسید و پلی پیرول استفاده شد. از طرح آماری باکس بنکن برای بررسی تاثیر سه فاکتور اسانس گلپر، نانوذرات اکسید منیزیم و پلی پیرول بر روی خواص فیزیکوشیمیایی فیلم استفاده شد. بر اساس نتایج به دست آمده، جذب رطوبت،انحلال­پذیری و نفوذ پذیری نسبت به بخار آب فیلم ها با افزایش محتوای اسانس و پیرول کاهش یافت. افزایش مقادیر اسانس و پیرول در ساختار فیلم خواص مکانیکی فیلم ها را بهبود بخشید. سپس فیلم های بهینه (حاوی 12 درصد اسانس، 904/0 درصد اکسید منیزیم و 2/0 پیرول) برای ارزیابی خواص ساختاری و ضد میکروبی مورد مطالعه قرار گرفتند. خاصیت آنتی باکتریال، آنتی اکسیدانی و هدایت الکتریکی فیلم در حضور هر سه افزودنی اسانس گلپر، نانوذرات اکسید منیزیم و پلی پیرول به شدت افزایش یافت (05/0>P). فیلم کامپوزیت گلوتن-اسانس-اکسید منیزیم-پلی پیرول بیشترین خاصیت آنتی اکسیدانی و آنتی باکتریال را داشت. فیلم بهینه دارای فعالیت ضد باکتریایی بالاتری در برابر اشیرشیاکلی (Escherichia Coli) ATCC13706 در مقایسه با استافیلوکوکوس اورئوس (Staphylococcus aureus) ATCC6538 بود. تصاویر SEM نشان داد اسانس و پلی پیرول ساختار فیلم گلوتن را منسجم تر کرده و آن را در برابر عبور بخار آب مقاوم تر کرده است. طیف های FTIR برهمکنش های الکترواستاتیک بین گلوتن با اسانس و پلی پیرول را تایید کرد. نتایج آنالیز حرارتی نشان داد پلی پیرول به شدت مقاومت حرارتی فیلم را افزایش داده و نانوذرات تاثیر چندانی بر روی مقاومت حرارتی نداشته اند. نتایج این پژوهش نشان داد که فیلم کامپوزیتی و زیست فعال گلوتنی با داشتن سه خاصیت مهم هدایت الکتریکی، آنتی باکتریالی و آنتی اکسیدانی پتانسیل استفاده به عنوان فیلم فعال و هوشمند در بسته بندی محصولات غذایی فساد پذیر را دارد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of antimicrobial and antioxidant film of gluten containing Heracleum persicum essential oil, magnesium oxide nanoparticles and polypyrrole by Response Surface Methodology

نویسندگان English

Manuchehr fazeli
Mohammad Alizadeh Khaledabad
Sajad Pirsa
Department of Food Science and Technology, Faculty of Agriculture, Urmia University, P.O. Box, 57561 51818, Urmia, Iran
چکیده English

The aim of this study was to prepare antimicrobial and antioxidant films based on wheat gluten and Heracleum persicum essential oil, magnesium oxide nanoparticles and polypyrrole were used to improve the structure of films. Response surface statistical design was used to investigate the effect of the essence, magnesium oxide nanoparticles and polypyrrole on the physicochemical properties of the films. According to the obtained results, moisture absorption, solubility and water vapor permeability of the films decreased with increasing the content of essential oil and pyrrole. Increasing the amount of essential oil and pyrrole in the film structure improved the mechanical properties of the films. Then, the optimal films (containing 12% essential oil, 0.904% magnesium oxide and 0.2 pyrrole) were studied to evaluate the structural and antimicrobial properties. The antibacterial, antioxidant and electrical conductivity of the film was greatly increased in the presence of all three additives of essence, magnesium oxide nanoparticles and polypyrrole (P <0.05). Gluten-essence-MgO-PPy (Glu-E-MgO-PPy) composite film had the highest antioxidant and antibacterial properties. The optimal film had higher antibacterial activity against Escherichia Coli ATCC13706 compared with Staphylococcus aureus ATCC6538. SEM images showed that the essence and polypyrrole strengthened the gluten film structure and made it more resistant to the passage of water vapor. FTIR spectra confirmed the electrostatic interactions between gluten and essence and polypyrrole. The results of thermal analysis showed that polypyrrole greatly increased the thermal resistance of the film and the nanoparticles had little effect on the thermal resistance. The results of this study showed that composite and bioactive film with three important properties of electrical conductivity, antibacterial and antioxidant has the potential to be used as an active and intelligent film in the packaging of perishable food products.

کلیدواژه‌ها English

Gluten
magnesium oxide
Heracleum persicum essential oil
Polypyrrole
Active film
[1] Ray, S. S., & Bousmina, M. (2005). Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Progress in materials science, 50(8), 962-1079.
[2] Pirsa, S., Mohtarami, F., & Kalantari, S. (2020). Preparation of biodegradable composite starch/tragacanth gum/nanoclay film and study of its physicochemical and mechanical properties. Chemical Review and Letters, 3(3), 98-103.
[3] Deepika, K., Praveena, P. L., Srisugamathi, G., & Nisha, J. N. (2021). Development and evaluation study of polyvinyl alcohol with gluten film. Materials Today: Proceedings, 45, 597-602.
[4] Zheng, K., Xiao, S., Li, W., Wang, W., Chen, H., Yang, F., & Qin, C. (2019). Chitosan-acorn starch-eugenol edible film: Physico-chemical, barrier, antimicrobial, antioxidant and structural properties. International journal of biological macromolecules, 135, 344-352.
[5] Hiraishi, T., & Taguchi, S. (2009). Enzyme-catalyzed synthesis and degradation of biopolymers. Mini-Reviews in Organic Chemistry, 6(1), 44-54.
[6] Mohammadi, B., Pirsa, S., & Alizadeh, M. (2019). Preparing chitosan–polyaniline nanocomposite film and examining its mechanical, electrical, and antimicrobial properties. Polymers and Polymer Composites, 27(8), 507-517.
[7] Pirsa, S., Farshchi, E., & Roufegarinejad, L. (2020). Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO2–Ag nano-composite. Journal of Polymers and the Environment, 28(12), 3154-3163.

[8] Pirsa, S. (2020). Biodegradable film based on pectin/Nano-clay/methylene blue: Structural and physical properties and sensing ability for measurement of vitamin C. International Journal of Biological Macromolecules, 163, 666-675.
[9] Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids, 99, 105338.
[10] Ansorena, M. R., Zubeldía, F., & Marcovich, N. E. (2016). Active wheat gluten films obtained by thermoplastic processing. LWT-Food Science and Technology, 69, 47-54.
[11] Türe, H., Gällstedt, M., & Hedenqvist, M. S. (2012). Antimicrobial compression-moulded wheat gluten films containing potassium sorbate. Food Research International, 45(1), 109-115.
[12] Pirsa, S., & Aghbolagh Sharifi, K. (2020). A review of the applications of bioproteins in the preparation of biodegradable films and polymers. Journal of Chemistry Letters, 1(2), 47-58.
[13] Mastromatteo, M., Barbuzzi, G., Conte, A., & Del Nobile, M. A. (2009). Controlled release of thymol from zein based film. Innovative Food Science & Emerging Technologies, 10(2), 222-227.
[14] Ghasemi, S., Bari, M. R., Pirsa, S., & Amiri, S. (2020). Use of bacterial cellulose film modified by polypyrrole/TiO2-Ag nanocomposite for detecting and measuring the growth of pathogenic bacteria. Carbohydrate polymers, 232, 115801.
[15] El-Wakil, N. A., Hassan, E. A., Abou-Zeid, R. E., & Dufresne, A. (2015). Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydrate polymers, 124, 337-346.
[16] Chavoshizadeh, S., Pirsa, S., & Mohtarami, F. (2020). Sesame oil oxidation control by active and smart packaging system using wheat gluten/chlorophyll film to increase shelf life and detecting expiration date. European Journal of Lipid Science and Technology, 122(3), 1900385.
[17] Zubeldía, F., Ansorena, M. R., & Marcovich, N. E. (2015). Wheat gluten films obtained by compression molding. Polymer Testing, 43, 68-77.
[18] Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I., Buontempo, R. C., Bilck, A. P., & Mei, L. H. I. (2018). The effect of fatty acids on the physicochemical properties of edible films composed of gelatin and gluten proteins. LWT, 87, 293-300.
[19] Rocca-Smith, J. R., Marcuzzo, E., Karbowiak, T., Centa, J., Giacometti, M., Scapin, F., ... & Debeaufort, F. (2016). Effect of lipid incorporation on functional properties of wheat gluten based edible films. Journal of Cereal Science, 69, 275-282.
[20] Pirsa, S., Asadzadeh, F., & Karimi Sani, I. (2020). Synthesis of magnetic gluten/pectin/Fe3O4 nano-hydrogel and its use to reduce environmental pollutants from Lake Urmia sediments. Journal of Inorganic and Organometallic Polymers and Materials, 30(8), 3188-3198.
[21] Sartori, T., Feltre, G., do Amaral Sobral, P. J., da Cunha, R. L., & Menegalli, F. C. (2018). Properties of films produced from blends of pectin and gluten. Food Packaging and Shelf Life, 18, 221-229.
[22] Zhang, Y., Deng, L., Zhong, H., Pan, J., Li, Y., & Zhang, H. (2020). Superior water stability and antimicrobial activity of electrospun gluten nanofibrous films incorporated with glycerol monolaurate. Food Hydrocolloids, 109, 106116.
[23] Gutiérrez, T. J., Mendieta, J. R., & Ortega-Toro, R. (2021). In-depth study from gluten/PCL-based food packaging films obtained under reactive extrusion conditions using chrome octanoate as a potential food grade catalyst. Food Hydrocolloids, 111, 106255.
[24] Jabraili, A., Pirsa, S., Pirouzifard, M. K., & Amiri, S. (2021). Biodegradable nanocomposite film based on gluten/silica/calcium chloride: physicochemical properties and bioactive compounds extraction capacity. Journal of Polymers and the Environment, 29(8), 2557-2571.
[25] Swaroop, C., & Shukla, M. (2018). Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. International Journal of Biological Macromolecules, 113, 729-736.
[26] Mirtalebi, S. S., Almasi, H., & Khaledabad, M. A. (2019). Physical, morphological, antimicrobial and release properties of novel MgO-bacterial cellulose nanohybrids prepared by in-situ and ex-situ methods. International journal of biological macromolecules, 128, 848-857.
[27] Hosseini, S. N., Pirsa, S., & Farzi, J. (2021). Biodegradable nano composite film based on modified starch-albumin/MgO; antibacterial, antioxidant and structural properties. Polymer Testing, 97, 107182.
[28] Sanuja, S., Agalya, A., & Umapathy, M. J. (2014). Studies on magnesium oxide reinforced chitosan bionanocomposite incorporated with clove oil for active food packaging application. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(14), 733-740.
[29] Noori, A. J., & Kareem, F. A. (2019). The effect of magnesium oxide nanoparticles on the antibacterial and antibiofilm properties of glass-ionomer cement. Heliyon, 5(10), e02568.
[30] Gharachorloo, M., Honarvar, M., & Mardani, S. (2018). Chemical compositions and antioxidant activity of Heracleum persicum essential oil. Brazilian Journal of Pharmaceutical Sciences, 53.
[31] Radjabian, T., Salimi, A., Rahmani, N., Shockravi, A., & Mozaffarian, V. (2013). Essential oil composition of some wild populations of Heracleum persicum Desf. Ex Fischer growing in Iran. Journal of Essential Oil Bearing Plants, 16(6), 841-849.
[32] Firuzi, O., Asadollahi, M., Gholami, M., & Javidnia, K. (2010). Composition and biological activities of essential oils from four Heracleum species. Food Chemistry, 122(1), 117-122.
[33] Rezayan, A., & Ehsani, A. (2015). Evaluation of the chemical compounds and antibacterial properties of the aerial parts of persian Heracleum persicum essence. Journal of Babol University of Medical Sciences, 17(6), 26-32.
[34] Alizadeh, N., Pirsa, S., Mani-Varnosfaderani, A., & Alizadeh, M. S. (2015). Design and fabrication of open-tubular array gas sensors based on conducting polypyrrole modified with crown ethers for simultaneous determination of alkylamines. IEEE Sensors Journal, 15(7), 4130-4136.
[35] Alizadeh, M., Pirsa, S., & Faraji, N. (2017). Determination of lemon juice adulteration by analysis of gas chromatography profile of volatile organic compounds extracted with nano-sized polyester-polyaniline fiber. Food analytical methods, 10(6), 2092-2101.
[36] Alizadeh, N., Ataei, A. A., & Pirsa, S. (2015). Nanostructured conducting polypyrrole film prepared by chemical vapor deposition on the interdigital electrodes at room temperature under atmospheric condition and its application as gas sensor. Journal of the Iranian Chemical Society, 12(9), 1585-1594.
[37] Ghasemi, F., Pirsa, S., Alizadeh, M., & Mohtarami, F. (2018). Extraction and determination of volatile organic acid concentration in pomegranate, sour cherry, and red grape juices by PPy-Ag nanocomposite fiber for authentication. Separation Science and Technology, 53(1), 117-125.
[38] Pirsa, S., Alizadeh, M., & Ghahremannejad, N. (2016). Application of nano-sized poly N-phenyl pyrrole coated polyester fiber to headspace microextraction of some volatile organic compounds and analysis by gas chromatography. Current Analytical Chemistry, 12(5), 457-464.
[39] Sani, I. K., Geshlaghi, S. P., Pirsa, S., & Asdagh, A. (2021). Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocolloids, 117, 106719.
[40] Radjabian, T., Salimi, A., Rahmani, N., Shockravi, A., & Mozaffarian, V. (2013). Essential oil composition of some wild populations of Heracleum persicum Desf. Ex Fischer growing in Iran. Journal of Essential Oil Bearing Plants, 16(6), 841-849.
[41] Chavoshizadeh, S., Pirsa, S., & Mohtarami, F. (2020). Conducting/smart color film based on wheat gluten/chlorophyll/polypyrrole nanocomposite. Food Packaging and Shelf Life, 24, 100501.
[42] Guo, X., Lu, Y., Cui, H., Jia, X., Bai, H., & Ma, Y. (2012). Factors affecting the physical properties of edible composite film prepared from zein and wheat gluten. Molecules, 17(4), 3794-3804.
[43] Moradi, M., Tajik, H., Rohani, S. M. R., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J., & Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT-Food Science and Technology, 46(2), 477-484.
[44] Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166.
[45] Grande-Tovar, C. D., Serio, A., Delgado-Ospina, J., Paparella, A., Rossi, C., & Chaves-López, C. (2018). Chitosan films incorporated with Thymus capitatus essential oil: Mechanical properties and antimicrobial activity against degradative bacterial species isolated from tuna (Thunnus sp.) and swordfish (Xiphias gladius). Journal of food science and technology, 55(10), 4256-4265.
[46] Olabarrieta, I., Gällstedt, M., Ispizua, I., Sarasua, J. R., & Hedenqvist, M. S. (2006). Properties of aged montmorillonite− wheat gluten composite films. Journal of Agricultural and Food Chemistry, 54(4), 1283-1288.
[47] Bideau, B., Bras, J., Adoui, N., Loranger, E., & Daneault, C. (2017). Polypyrrole/nanocellulose composite for food preservation: barrier and antioxidant characterization. Food packaging and shelf life, 12, 1-8.
[48] Wu, X. H., Huang, Y. F., Gao, Q., Su, J. Q., Zhou, W., & Li, C. B. (2007). Study on the antioxidant activities of cinnamon essence oil. Food Sci Technol, 4, 85-88.
[49] Ramirez, D. O. S., Varesano, A., Carletto, R. A., Vineis, C., Perelshtein, I., Natan, M., ... & Gedanken, A. (2019). Antibacterial properties of polypyrrole-treated fabrics by ultrasound deposition. Materials Science and Engineering: C, 102, 164-170.
[50] Jin, T., & He, Y. (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. Journal of Nanoparticle Research, 13(12), 6877-6885.
[51] Li, W., Dobraszczyk, B. J., Dias, A., & Gil, A. M. (2006). Polymer conformation structure of wheat proteins and gluten subfractions revealed by ATR‐FTIR. Cereal Chemistry, 83(4), 407-410.
[52] Yanping, G. Z. Z. (2006). Studying the secondary structure of modified gluten by FTIR. J Chin Cereals Oils Assoc, 3.
[53] Abdolsattari, P., Rezazadeh-Bari, M., & Pirsa, S. (2022). Smart Film Based on Polylactic Acid, Modified with Polyaniline/ZnO/CuO: Investigation of Physicochemical Properties and its use of Intelligent Packaging of Orange Juice.
[54] Nerkar, D., Rajwade, M., Jaware, S., & Jog, M. (2020). Synthesis and characterization of polyvinyl alcohol-polypyrrole-silver nanocomposite polymer films. International Journal of Nano Dimension, 11(3), 205-214.