[1] Ray, S. S., & Bousmina, M. (2005). Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Progress in materials science, 50(8), 962-1079.
[2] Pirsa, S., Mohtarami, F., & Kalantari, S. (2020). Preparation of biodegradable composite starch/tragacanth gum/nanoclay film and study of its physicochemical and mechanical properties. Chemical Review and Letters, 3(3), 98-103.
[3] Deepika, K., Praveena, P. L., Srisugamathi, G., & Nisha, J. N. (2021). Development and evaluation study of polyvinyl alcohol with gluten film. Materials Today: Proceedings, 45, 597-602.
[4] Zheng, K., Xiao, S., Li, W., Wang, W., Chen, H., Yang, F., & Qin, C. (2019). Chitosan-acorn starch-eugenol edible film: Physico-chemical, barrier, antimicrobial, antioxidant and structural properties. International journal of biological macromolecules, 135, 344-352.
[5] Hiraishi, T., & Taguchi, S. (2009). Enzyme-catalyzed synthesis and degradation of biopolymers. Mini-Reviews in Organic Chemistry, 6(1), 44-54.
[6] Mohammadi, B., Pirsa, S., & Alizadeh, M. (2019). Preparing chitosan–polyaniline nanocomposite film and examining its mechanical, electrical, and antimicrobial properties. Polymers and Polymer Composites, 27(8), 507-517.
[7] Pirsa, S., Farshchi, E., & Roufegarinejad, L. (2020). Antioxidant/antimicrobial film based on carboxymethyl cellulose/gelatin/TiO2–Ag nano-composite. Journal of Polymers and the Environment, 28(12), 3154-3163.
[8] Pirsa, S. (2020). Biodegradable film based on pectin/Nano-clay/methylene blue: Structural and physical properties and sensing ability for measurement of vitamin C. International Journal of Biological Macromolecules, 163, 666-675.
[9] Almasi, H., Azizi, S., & Amjadi, S. (2020). Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocolloids, 99, 105338.
[10] Ansorena, M. R., Zubeldía, F., & Marcovich, N. E. (2016). Active wheat gluten films obtained by thermoplastic processing. LWT-Food Science and Technology, 69, 47-54.
[11] Türe, H., Gällstedt, M., & Hedenqvist, M. S. (2012). Antimicrobial compression-moulded wheat gluten films containing potassium sorbate. Food Research International, 45(1), 109-115.
[12] Pirsa, S., & Aghbolagh Sharifi, K. (2020). A review of the applications of bioproteins in the preparation of biodegradable films and polymers. Journal of Chemistry Letters, 1(2), 47-58.
[13] Mastromatteo, M., Barbuzzi, G., Conte, A., & Del Nobile, M. A. (2009). Controlled release of thymol from zein based film. Innovative Food Science & Emerging Technologies, 10(2), 222-227.
[14] Ghasemi, S., Bari, M. R., Pirsa, S., & Amiri, S. (2020). Use of bacterial cellulose film modified by polypyrrole/TiO2-Ag nanocomposite for detecting and measuring the growth of pathogenic bacteria. Carbohydrate polymers, 232, 115801.
[15] El-Wakil, N. A., Hassan, E. A., Abou-Zeid, R. E., & Dufresne, A. (2015). Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging. Carbohydrate polymers, 124, 337-346.
[16] Chavoshizadeh, S., Pirsa, S., & Mohtarami, F. (2020). Sesame oil oxidation control by active and smart packaging system using wheat gluten/chlorophyll film to increase shelf life and detecting expiration date. European Journal of Lipid Science and Technology, 122(3), 1900385.
[17] Zubeldía, F., Ansorena, M. R., & Marcovich, N. E. (2015). Wheat gluten films obtained by compression molding. Polymer Testing, 43, 68-77.
[18] Fakhouri, F. M., Martelli, S. M., Caon, T., Velasco, J. I., Buontempo, R. C., Bilck, A. P., & Mei, L. H. I. (2018). The effect of fatty acids on the physicochemical properties of edible films composed of gelatin and gluten proteins. LWT, 87, 293-300.
[19] Rocca-Smith, J. R., Marcuzzo, E., Karbowiak, T., Centa, J., Giacometti, M., Scapin, F., ... & Debeaufort, F. (2016). Effect of lipid incorporation on functional properties of wheat gluten based edible films. Journal of Cereal Science, 69, 275-282.
[20] Pirsa, S., Asadzadeh, F., & Karimi Sani, I. (2020). Synthesis of magnetic gluten/pectin/Fe3O4 nano-hydrogel and its use to reduce environmental pollutants from Lake Urmia sediments. Journal of Inorganic and Organometallic Polymers and Materials, 30(8), 3188-3198.
[21] Sartori, T., Feltre, G., do Amaral Sobral, P. J., da Cunha, R. L., & Menegalli, F. C. (2018). Properties of films produced from blends of pectin and gluten. Food Packaging and Shelf Life, 18, 221-229.
[22] Zhang, Y., Deng, L., Zhong, H., Pan, J., Li, Y., & Zhang, H. (2020). Superior water stability and antimicrobial activity of electrospun gluten nanofibrous films incorporated with glycerol monolaurate. Food Hydrocolloids, 109, 106116.
[23] Gutiérrez, T. J., Mendieta, J. R., & Ortega-Toro, R. (2021). In-depth study from gluten/PCL-based food packaging films obtained under reactive extrusion conditions using chrome octanoate as a potential food grade catalyst. Food Hydrocolloids, 111, 106255.
[24] Jabraili, A., Pirsa, S., Pirouzifard, M. K., & Amiri, S. (2021). Biodegradable nanocomposite film based on gluten/silica/calcium chloride: physicochemical properties and bioactive compounds extraction capacity. Journal of Polymers and the Environment, 29(8), 2557-2571.
[25] Swaroop, C., & Shukla, M. (2018). Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications. International Journal of Biological Macromolecules, 113, 729-736.
[26] Mirtalebi, S. S., Almasi, H., & Khaledabad, M. A. (2019). Physical, morphological, antimicrobial and release properties of novel MgO-bacterial cellulose nanohybrids prepared by in-situ and ex-situ methods. International journal of biological macromolecules, 128, 848-857.
[27] Hosseini, S. N., Pirsa, S., & Farzi, J. (2021). Biodegradable nano composite film based on modified starch-albumin/MgO; antibacterial, antioxidant and structural properties. Polymer Testing, 97, 107182.
[28] Sanuja, S., Agalya, A., & Umapathy, M. J. (2014). Studies on magnesium oxide reinforced chitosan bionanocomposite incorporated with clove oil for active food packaging application. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(14), 733-740.
[29] Noori, A. J., & Kareem, F. A. (2019). The effect of magnesium oxide nanoparticles on the antibacterial and antibiofilm properties of glass-ionomer cement. Heliyon, 5(10), e02568.
[30] Gharachorloo, M., Honarvar, M., & Mardani, S. (2018). Chemical compositions and antioxidant activity of Heracleum persicum essential oil. Brazilian Journal of Pharmaceutical Sciences, 53.
[31] Radjabian, T., Salimi, A., Rahmani, N., Shockravi, A., & Mozaffarian, V. (2013). Essential oil composition of some wild populations of Heracleum persicum Desf. Ex Fischer growing in Iran. Journal of Essential Oil Bearing Plants, 16(6), 841-849.
[32] Firuzi, O., Asadollahi, M., Gholami, M., & Javidnia, K. (2010). Composition and biological activities of essential oils from four Heracleum species. Food Chemistry, 122(1), 117-122.
[33] Rezayan, A., & Ehsani, A. (2015). Evaluation of the chemical compounds and antibacterial properties of the aerial parts of persian Heracleum persicum essence. Journal of Babol University of Medical Sciences, 17(6), 26-32.
[34] Alizadeh, N., Pirsa, S., Mani-Varnosfaderani, A., & Alizadeh, M. S. (2015). Design and fabrication of open-tubular array gas sensors based on conducting polypyrrole modified with crown ethers for simultaneous determination of alkylamines. IEEE Sensors Journal, 15(7), 4130-4136.
[35] Alizadeh, M., Pirsa, S., & Faraji, N. (2017). Determination of lemon juice adulteration by analysis of gas chromatography profile of volatile organic compounds extracted with nano-sized polyester-polyaniline fiber. Food analytical methods, 10(6), 2092-2101.
[36] Alizadeh, N., Ataei, A. A., & Pirsa, S. (2015). Nanostructured conducting polypyrrole film prepared by chemical vapor deposition on the interdigital electrodes at room temperature under atmospheric condition and its application as gas sensor. Journal of the Iranian Chemical Society, 12(9), 1585-1594.
[37] Ghasemi, F., Pirsa, S., Alizadeh, M., & Mohtarami, F. (2018). Extraction and determination of volatile organic acid concentration in pomegranate, sour cherry, and red grape juices by PPy-Ag nanocomposite fiber for authentication. Separation Science and Technology, 53(1), 117-125.
[38] Pirsa, S., Alizadeh, M., & Ghahremannejad, N. (2016). Application of nano-sized poly N-phenyl pyrrole coated polyester fiber to headspace microextraction of some volatile organic compounds and analysis by gas chromatography. Current Analytical Chemistry, 12(5), 457-464.
[39] Sani, I. K., Geshlaghi, S. P., Pirsa, S., & Asdagh, A. (2021). Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocolloids, 117, 106719.
[40] Radjabian, T., Salimi, A., Rahmani, N., Shockravi, A., & Mozaffarian, V. (2013). Essential oil composition of some wild populations of Heracleum persicum Desf. Ex Fischer growing in Iran. Journal of Essential Oil Bearing Plants, 16(6), 841-849.
[41] Chavoshizadeh, S., Pirsa, S., & Mohtarami, F. (2020). Conducting/smart color film based on wheat gluten/chlorophyll/polypyrrole nanocomposite. Food Packaging and Shelf Life, 24, 100501.
[42] Guo, X., Lu, Y., Cui, H., Jia, X., Bai, H., & Ma, Y. (2012). Factors affecting the physical properties of edible composite film prepared from zein and wheat gluten. Molecules, 17(4), 3794-3804.
[43] Moradi, M., Tajik, H., Rohani, S. M. R., Oromiehie, A. R., Malekinejad, H., Aliakbarlu, J., & Hadian, M. (2012). Characterization of antioxidant chitosan film incorporated with Zataria multiflora Boiss essential oil and grape seed extract. LWT-Food Science and Technology, 46(2), 477-484.
[44] Ojagh, S. M., Rezaei, M., Razavi, S. H., & Hosseini, S. M. H. (2010). Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chemistry, 122(1), 161-166.
[45] Grande-Tovar, C. D., Serio, A., Delgado-Ospina, J., Paparella, A., Rossi, C., & Chaves-López, C. (2018). Chitosan films incorporated with Thymus capitatus essential oil: Mechanical properties and antimicrobial activity against degradative bacterial species isolated from tuna (Thunnus sp.) and swordfish (Xiphias gladius). Journal of food science and technology, 55(10), 4256-4265.
[46] Olabarrieta, I., Gällstedt, M., Ispizua, I., Sarasua, J. R., & Hedenqvist, M. S. (2006). Properties of aged montmorillonite− wheat gluten composite films. Journal of Agricultural and Food Chemistry, 54(4), 1283-1288.
[47] Bideau, B., Bras, J., Adoui, N., Loranger, E., & Daneault, C. (2017). Polypyrrole/nanocellulose composite for food preservation: barrier and antioxidant characterization. Food packaging and shelf life, 12, 1-8.
[48] Wu, X. H., Huang, Y. F., Gao, Q., Su, J. Q., Zhou, W., & Li, C. B. (2007). Study on the antioxidant activities of cinnamon essence oil. Food Sci Technol, 4, 85-88.
[49] Ramirez, D. O. S., Varesano, A., Carletto, R. A., Vineis, C., Perelshtein, I., Natan, M., ... & Gedanken, A. (2019). Antibacterial properties of polypyrrole-treated fabrics by ultrasound deposition. Materials Science and Engineering: C, 102, 164-170.
[50] Jin, T., & He, Y. (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. Journal of Nanoparticle Research, 13(12), 6877-6885.
[51] Li, W., Dobraszczyk, B. J., Dias, A., & Gil, A. M. (2006). Polymer conformation structure of wheat proteins and gluten subfractions revealed by ATR‐FTIR. Cereal Chemistry, 83(4), 407-410.
[52] Yanping, G. Z. Z. (2006). Studying the secondary structure of modified gluten by FTIR. J Chin Cereals Oils Assoc, 3.
[53] Abdolsattari, P., Rezazadeh-Bari, M., & Pirsa, S. (2022). Smart Film Based on Polylactic Acid, Modified with Polyaniline/ZnO/CuO: Investigation of Physicochemical Properties and its use of Intelligent Packaging of Orange Juice.
[54] Nerkar, D., Rajwade, M., Jaware, S., & Jog, M. (2020). Synthesis and characterization of polyvinyl alcohol-polypyrrole-silver nanocomposite polymer films. International Journal of Nano Dimension, 11(3), 205-214.