Aghajani, N., Kashaninejad, M., Dehghani, A.A. and Daraei Garmakhany. A., 2012. Comparison between artificial neural networks and mathematical models for moisture ratio estimation in two varieties of green malt. Quality Assurance and Safety of Crops & Foods 4: 93-101.
Cabrera A. C. and Prieto J. M., 2010. Application of artificial neural networks to the prediction of the antioxidant activity of essential oils in two experimental in vitro models. Food Chemistry. 118: 141–146.
Ferreira Zielinski A. A., Granato D., Alberti A., Nogueira A., Demiate I. M., Isidoro Haminiuk C. W. 2015. Modelling the extraction of phenolic compounds and in vitro antioxidant activity of mixtures of green, white and black teas (Camellia sinensis L. Kuntze). Journal of Food Science and Technology 52: 6966–6977
Hatamnia A. A. Abbaspour N. and Darvishzadeh R. 2014. “Antioxidant activity and phenolic profile of different parts of Bene (Pistacia atlantica subsp. kurdica) fruits” Food Chemistry., 145, pp 306-311.
Hayouni, E. A., Abedrabba, M., Bouix, M., Hamdi, M.,2007. The effects of solvents and extraction method on the phenolic "contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts, Food Chemistry, 105, 1126-1134.
Golpour I., Ferrão A. C., Gonçalves F., Correia P. M. R., Blanco-Marigorta A. M. and Guiné R. P. F. 2018. Extraction of Phenolic Compounds with Antioxidant Activity from Strawberries: Modelling with Artificial Neural Networks (ANNs). Foods. 10(2228): 1-13.
Guine R. P. F., Barroca M. J., Goncalves F. J., Alves M., Oliveira S., Mendes M. 2015. Artificial neural network modelling of the antioxidant activity and phenolic compounds of bananas submitted to different drying treatments. Food Chemistry 168: 454–459.
Raquel P.F. G., Christophe G., Susana M., Fernando G., Daniela C. V. T. A., Mateus M. 2018. Modelling through artificial neural networks of the phenolic compounds and antioxidant activity of blueberries. 37(2): 193-212.
Kashiri, M., Daraei Garmakhany, A. and Deghani, A.A., 2012. Modeling of sorghum soaking using artificial neural networks (MLP). Quality Assurance and Safety of Crops & Foods 4: 179-184.
Khadivi-Khub A. Aghaei Y. and Mirjalili M. H. 2014. “Phenotypic and phytochemical diversity among different populations of Stachys lavandulifolia” Journal of Biochemical Systematics and Ecology., 54, pp 272-278.
Mizubuti, I.Y., Junior, O.B., de Olivia souza L.W., dos Santos Ferrera da Silva R.S., ida E.I. 2000. “Rsponse surface methodology for extraction optimization of pigeon pea protein” Food Chemistry, 70, 259-265.
Morimoto, T., 2006. Genetic algorithm. In: Sablani, S.S., Datta, A.K., Rehman, M.S. and Mujumdar, A.S. (ed.). Handbook of food and bioprocess modeling techniques. CRC press, New York, NY, USA.
Pan, G., Yu, G., Zhu, C., Qiao, J., 2012. Optimization of ultrasound-assisted extraction (UAE) of flavonoids compounds (FC) from hawthorn seed (HS). Ultrasonics Sonochemistry 19, 486-490.
Şahin, S. Aybastıer, Ö. & Işık, E. (2013) “Optimisation of ultrasonic-assisted extraction of antioxidant compounds from Artemisia absinthium using response surface methodology”. Food Chemistry, 141, 1361-1368.
Salarbashi, D., Fazly Bazzaz, B. S., Karimkhani, M. M., Sabeti Noghabi, Z., Khanzadeh, F. and Sahebkar, A., 2014. Oil stability index and biological activities of Achillea biebersteinii and Achillea wilhelmsii extracts as influenced by various ultrasound intensities. Industrial Crops and Products, 55: 163-172.
Salarbashi, D, Khanzadeh, F, Hosseini, S.M, Mohamadi, M, Rajaei, A. Draei Garamkhani, A. (2014). Prediction of the extraction yield using artificial neural network and response surface methodology: ultrasound-assisted extraction from Achillea berbresteinii L. Quality Assurance and Safety of Crops & Foods 6: 431-438.
Shahabi Ghahfarrokhi, I., Daraei Garmakhany, A., Kashaninejad, M. and Dehghani, A. A., 2012. Estimation of peroxidase activity in red cabbage by artificial neural network. Quality Assurance and Safety of Crops & Foods 5: 163-167.
Shahidi, F. 1997. Natural antioxidants chemistry, health effects, and application. AOCS Rress, Champaign, I LLinois, pp 414.
Susi, E. Asmah, Rahmat., 2002. Anticarcinogenic properties and antioxidant activity of henna. Journal of Medical Science, 2, 194-197.
Tao, Y., Zhang, Z., Sun, D.-W., (2014). Kinetic modeling of ultrasound-assisted extraction of phenolic compounds from grape marc: Influence of acoustic energy density and temperature. Ultrasonics Sonochemistry 21, 1461-1469.