مدل‌سازی خشک‌کردن و باز‌جذب آب گلابی با استفاده از مدل‌های مختلف ریاضی

نویسنده
استادیار گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه جهرم، جهرم، ایران. تلفن 07154344445
چکیده
با کنترل شرایط خشک کردن و هیدراتاسیون نمونه میتوان خواص بازسازی بهینه را به دست آورد. بنابراین‌، مدلهای ریاضیاتی که سینتیک خشک شدن و هیدراتاسیون را توصیف می‌کنند‌، در طراحی و بهینه سازی فرایند بازسازی محصولات خشک مهم هستند. در این مطالعه‌، روند خشک شدن برش‌های گلابی در 5 درجه حرارت مختلف مورد بررسی قرار گرفت و مقدار ضریب انتشار موثر نمونه ها تعیین شد. داده های خشک کردن با 9 مدل ریاضی نیز برازش شدند. فرآیند هیدراتاسیون نمونه های خشک شده در دمای 50 درجه سانتیگراد نیز با 4 مدل مختلف برازش شد. نتایج نشان داد که ضریب انتشار موثر با افزایش دما روند افزایشی دارد و وابستگی دمایی آن را میتوان با معادله آرنیوس پیش بینی کرد. از بین مدلهای ریاضی دو مدل Logarithmic و Weibull در پیش بینی تغییرات رطوبت نمونه در هنگام خشک شدن از سایر مدل ها بهتر بودند و بهترین مدل برای فرآیند هیدراتاسیون مدل Peleg بود. در آخرین گام، وابستگی ثابت های این معادلات به دما با مدل های آرنیوس و واپاشی نمایی برازش شدند.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Modelling of drying and rehydration of pears using different mathematical models

نویسنده English

mohsen Dalvi-Isfahan
Assistant professor, Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, Jahrom, Iran.
چکیده English

By controlling dehydration and rehydration conditions, optimal reconstitution properties can be achieved. Therefore, mathematical models that describe the kinetics of moisture removal and moisture uptake are important in designing and optimizing that process. In this study, the drying process of pear slices at 5 different temperatures was investigated and the effective diffusion coefficient of the samples was determined. Drying data were also fitted with 9 mathematical models. The hydration process of the dried samples at 50‌°‌C was also fitted with 4 different models. The results showed that the effective diffusion coefficient has an increasing trend with increasing temperature and its temperature dependence can be described by Arrhenius equation. Among the dehydration models, two models (logarithmic and Weibull) were better than other models in predicting changes in sample moisture during drying and the best model for the rehydration process was Peleg model. In the last step, the temperature dependence of the constants of these equations were fitted with Arrhenius and exponential decay models.

کلیدواژه‌ها English

Drying
Rehydration
Pear
Modeling
[1] Castro, A. M., Mayorga, E. Y., & Moreno, F. L. (2018). Mathematical modelling of convective drying of fruits: A review. Journal of Food Engineering, 223, 152-167.
[2] Antal, T., Tarek-Tilistyák, J., Cziáky, Z., & Sinka, L. (2017). Comparison of Drying and Quality Characteristics of Pear (Pyrus Communis L.) Using Mid-Infrared-Freeze Drying and Single Stage of Freeze Drying %J International Journal of Food Engineering. 13(4).
[3] Park, K. J., Bin, A., & Pedro Reis Brod, F. (2003). Drying of pear d’Anjou with and without osmotic dehydration. Journal of Food Engineering, 56(1), 97-103.
[4] Doymaz, İ., & İsmail, O. (2012). Experimental characterization and modelling of drying of pear slices. Food Science and Biotechnology, 21(5), 1377-1381.
[5] Taskin, O., Polat, A., Izli, N., & Asik, B. B. (2019). Intermittent Microwave-Vacuum Drying Effects on Pears. Polish Journal of Food and Nutrition Sciences, 69(1), 101–108.
[6] Amiripour, M., Habibi-Najafi, M. B., Mohebbi, M., & Emadi, B. (2015). Optimization of osmo-vacuum drying of pear (Pyrus communis L.) using response surface methodology. Journal of Food Measurement and Characterization, 9(3), 269-280.
[7] Planinić, M., Velić, D., Tomas, S., Bilić, M., & Bucić, A. (2005). Modelling of drying and rehydration of carrots using Peleg’s model. European Food Research and Technology, 221(3), 446-451.
[8] Erbay, Z., & Icier, F. (2010). A Review of Thin Layer Drying of Foods: Theory, Modeling, and Experimental Results. Critical Reviews in Food Science and Nutrition, 50(5), 441-464.
[9] Onwude, D. I., Hashim, N., Janius, R. B., Nawi, N. M., & Abdan, K. (2016). Modeling the Thin-Layer Drying of Fruits and Vegetables: A Review. 15(3), 599-618.
[10] Dalvi-Isfahan, M. (2020). A comparative study on the efficiency of two modeling approaches for predicting moisture content of apple slice during drying. 43(11), e13527.
[11] Kaya, A., Aydin, O., & Dincer, I. (2007). Numerical Modeling of Forced-Convection Drying of Cylindrical Moist Objects. Numerical Heat Transfer, Part A: Applications, 51(9), 843-854.
[12] Toğrul, İ. T., & Pehlivan, D. (2003). Modelling of drying kinetics of single apricot. Journal of Food Engineering, 58(1), 23-32.
[13] Górnicki, K., Kaleta, A., Winiczenko, R., Chojnacka, A., & Janaszek, M. (2013). Some remarks on modelling of mass transfer kinetics during rehydration of dried fruits and vegetables. In N. H (Ed.), Mass transfer – advances in sustainable energy and environment oriented numerical modeling, (pp. 431–458). London: InTech.
[14] Golestani, R., Raisi, A., & Aroujalian, A. (2013). Mathematical Modeling on Air Drying of Apples Considering Shrinkage and Variable Diffusion Coefficient. Drying Technology, 31(1), 40-51.
[15] Schössler, K., Jäger, H., & Knorr, D. (2012). Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. Journal of Food Engineering, 108(1), 103-110.
[16] Guiné, R. P. F., Ferreira, D. M. S., Barroca, M. J., & Gonçalves, F. M. (2007). Study of the drying kinetics of solar-dried pears. Biosystems Engineering, 98(4), 422-429.
[17] Goula, A. M., & Adamopoulos, K. G. (2009). Modeling the Rehydration Process of Dried Tomato. Drying Technology, 27(10), 1078-1088.
[18] Ansari, S., Maftoon-Azad, N., Farahnaky, A., Hosseini, E., & Asadi, G. (2015). Modeling Rehydration Behavior of Dried Figs Journal of Agricultural Science and Technology, 17(1), 133-144.
[19] Moreira, R., Chenlo, F., Chaguri, L., & Fernandes, C. (2008). Water absorption, texture, and color kinetics of air-dried chestnuts during rehydration. Journal of Food Engineering, 86(4), 584-594.
[20] García-Pascual, P., Sanjuán, N., Melis, R., & Mulet, A. (2006). Morchella esculenta (morel) rehydration process modelling. Journal of Food Engineering, 72(4), 346-353.
[21] Solomon, W. K. (2007). Hydration Kinetics of Lupin (Lupinus albus) Seeds. Journal of Food Process Engineering, 30(1), 119-130.
[22] Turhan, M., Sayar, S., & Gunasekaran, S. (2002). Application of Peleg model to study water absorption in chickpea during soaking. Journal of Food Engineering, 53(2), 153-159.
[23] Karacabey, E., & Buzrul, S. (2017). Modeling and Predicting the Drying Kinetics of Apple and Pear: Application of the Weibull Model. Chemical Engineering Communications, 204(5), 573-579.