1. Pirsa, S., T. Shamusi, and E.M. Kia, Smart films based on bacterial cellulose nanofibers modified by conductive polypyrrole and zinc oxide nanoparticles. Journal of Applied Polymer Science, 2018. 135(34): p. 46617.
2. Farshchi, E., et al., Photocatalytic/biodegradable film based on carboxymethyl cellulose, modified by gelatin and TiO2-Ag nanoparticles. Carbohydrate polymers, 2019. 216: p. 189-196.
3. Pirsa, S., et al., Investigating microbial properties of traditional Iranian white cheese packed in active LDPE films incorporating metallic and organoclay nanoparticles. Chemical Review and Letters, 2020. 3(4): p. 168-174.
4. Almasi, H., et al., Heterogeneous modification of softwoods cellulose nanofibers with oleic acid: Effect of reaction time and oleic acid concentration. Fibers and Polymers, 2015. 16(8): p. 1715-1722.
5. Pirsa, S., et al., Selective hydrogen peroxide gas sensor based on nanosized polypyrrole modified by CuO nanoparticles. Sensor Letters, 2015. 13(7): p. 578-583.
6. Pirsa, S., F. Mohtarami, and S. Kalantari, Preparation of biodegradable composite starch/tragacanth gum/Nanoclay film and study of its physicochemical and mechanical properties. Chemical Review and Letters, 2020. 3(3): p. 98-103.
7. Pirouzifard, M., R.A. Yorghanlu, and S. Pirsa, Production of active film based on potato starch containing Zedo gum and essential oil of Salvia officinalis and study of physical, mechanical, and antioxidant properties. Journal of Thermoplastic Composite Materials, 2020. 33(7): p. 915-937.
8. Pirsa, S., I. Karimi Sani, and S. Khodayvandi, Design and fabrication of starch‐nano clay composite films loaded with methyl orange and bromocresol green for determination of spoilage in milk package. Polymers for Advanced Technologies, 2018. 29(11): p. 2750-2758.
9. Pirsa, S., H. Heidari, and J. Lotfi, Design selective gas sensors based on nano-sized polypyrrole/polytetrafluoroethylene and polypropylene membranes. IEEE Sensors Journal, 2016. 16(9): p. 2922-2928.
10. Pourjavaher, S., et al., Development of a colorimetric pH indicator based on bacterial cellulose nanofibers and red cabbage (Brassica oleraceae) extract. Carbohydrate Polymers, 2017. 156: p. 193-201.
11. ZADEH, M.N., et al., Application of the Edible Coating of Carboxy Methyl Cellulose/Pectin Composite Containing Humulus lupulus Extract on the Shelf Life of Fresh Cute Oranges at Cold Conditions. Iraninan Journal of Biosystem engeeniering, 2020. 51: p. 471-484.
12. Quinlan, G.J., G.S. Martin, and T.W.J.H. Evans, Albumin: biochemical properties and therapeutic potential. 2005. 41(6): p. 1211-1219.
13. Chick, H. and C.J.J.B.J. Martin, The precipitation of egg-albumin by ammonium sulphate. A contribution to the theory of the “salting-out” of proteins. 1913. 7(4): p. 380.
14. Abeyrathne, E., H. Lee, and D.J.P.S. Ahn, Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents—A review. 2013. 92(12): p. 3292-3299.
15. ZHANG, Y.-l., W.-q. ZHOU, and L.-y.J.J.o.Z.U.o.L.I. ZHANG, Study on the preservation of cherry tomatoes and cucumber by edible film of bovine serum albumin. 2013. 3.
16. Ghasemi, S., et al., Use of bacterial cellulose film modified by polypyrrole/TiO2-Ag nanocomposite for detecting and measuring the growth of pathogenic bacteria. Carbohydrate Polymers, 2020. 232: p. 115801.
17. Sani, I.K., S. Pirsa, and Ş. Tağı, Preparation of chitosan/zinc oxide/Melissa officinalis essential oil nano-composite film and evaluation of physical, mechanical and antimicrobial properties by response surface method. Polymer Testing, 2019. 79: p. 106004.
18. Rezaei, M., S. Pirsa, and S. Chavoshizadeh, Photocatalytic/antimicrobial active film based on wheat gluten/ZNO nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials, 2019: p. 1-12.
19. Chavoshizadeh, S., S. Pirsa, and F. Mohtarami, Conducting/smart color film based on wheat gluten/chlorophyll/polypyrrole nanocomposite. Food Packaging and Shelf Life, 2020. 24: p. 100501.
20. Mohammadi, B., S. Pirsa, and M. Alizadeh, Preparing chitosan–polyaniline nanocomposite film and examining its mechanical, electrical, and antimicrobial properties. Polymers and Polymer Composites, 2019. 27(8): p. 507-517.
21. Pirsa, S., F. Asadzadeh, and I.K. Sani, Synthesis of Magnetic Gluten/Pectin/Fe 3 O 4 Nano-hydrogel and Its Use to Reduce Environmental Pollutants from Lake Urmia Sediments. Journal of Inorganic and Organometallic Polymers and Materials, 2020: p. 1-11.
22. Sweedman, M.C., et al., Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. 2013. 92(1): p. 905-920.
23. Pirsa, S., Biodegradable film based on pectin/Nano-clay/methylene blue: Structural and physical properties and sensing ability for measurement of vitamin C. International Journal of Biological Macromolecules, 2020. 163: p. 666-675.
24. Colussi, R., et al., Physical, mechanical, and thermal properties of biodegradables films of rice starch. Current Agricultural Science and Technology, 2014. 20(1): p. 1-9.
25. ASDAGH, A. and S. PIRSA, Investigation the Physical, Antioxidant and Mechanical Properties of Active Pectin Film Containing Peppermint and Fennel Essential Oil. Iraninan J. Biosystem Engeen, 2019. 50: p. 129-143.
26. PIRSA, S., T. Shamusi, and K.E. MOGHADDAS, Preparing of Bacterial Cellulose/Polypyrrole-Zinc Oxide Nanocomposite Film and Studying its Physicomechanical, Antimicrobial and Antioxidant Properties. 2019.
27. Zolfi, M., et al., The improvement of characteristics of biodegradable films made from kefiran–whey protein by nanoparticle incorporation. Carbohydrate polymers, 2014. 109: p. 118-125.
28. Dehnad, D., et al., Optimization of physical and mechanical properties for chitosan–nanocellulose biocomposites. Carbohydrate Polymers, 2014. 105: p. 222-228.
29. Pereda, M., et al., Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydrate Polymers, 2014. 101: p. 1018-1026.
30. Kampeerapappun, P., et al., Preparation of cassava starch/montmorillonite composite film. Carbohydrate Polymers, 2007. 67(2): p. 155-163.
31. Taskaya, L., Y.-C. Chen, and J. Jaczynski, Color improvement by titanium dioxide and its effect on gelation and texture of proteins recovered from whole fish using isoelectric solubilization/precipitation. LWT-Food Science and Technology, 2010. 43(3): p. 401-408.
32. Kanmani, P. and J.-W. Rhim, Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate polymers, 2014. 106: p. 190-199.
33. Swaroop, C. and M. Shukla, Development of blown polylactic acid-MgO nanocomposite films for food packaging. Composites Part A: Applied Science and Manufacturing, 2019. 124: p. 105482.
34. Abdollahi, M., et al., Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. International journal of biological macromolecules, 2013. 54: p. 166-173.
35. Pereda, M., et al., Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. Journal of Food Engineering, 2011. 103(1): p. 76-83.
36. Ahmed, J., et al., Mechanical, structural and thermal properties of Ag–Cu and ZnO reinforced polylactide nanocomposite films. International journal of biological macromolecules, 2016. 86: p. 885-892.
37. Jayaramudu, J., et al., Structure and properties of highly toughened biodegradable polylactide/ZnO biocomposite films. International journal of biological macromolecules, 2014. 64: p. 428-434.
38. Sothornvit, R., J.-W. Rhim, and S.-I. Hong, Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. Journal of Food Engineering, 2009. 91(3): p. 468-473.
39. Marra, A., et al., Polylactic acid/zinc oxide biocomposite films for food packaging application. International journal of biological macromolecules, 2016. 88: p. 254-262.
40. Pantani, R., et al., PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. European Polymer Journal, 2013. 49(11): p. 3471-3482.
41. Wetzel, B., F. Haupert, and M.Q. Zhang, Epoxy nanocomposites with high mechanical and tribological performance. Composites Science and Technology, 2003. 63(14): p. 2055-2067.
42. Cao, X., et al., Green composites reinforced with hemp nanocrystals in plasticized starch. Journal of Applied Polymer Science, 2008. 109(6): p. 3804-3810.
43. Brown, G. and F. Ellyin, Assessing the predictive capability of two‐phase models for the mechanical behavior of alumina/epoxy nanocomposites. Journal of applied polymer science, 2005. 98(2): p. 869-879.
44. Gholami, R., B. Ghanbarzadeh, and J. Dehghannia, Potato Starch/Montmorillonite-Based Nanocomposites: Water Sensitivity, Mechanical and Thermal Properties and XRD Profile Study. Science and Technology, 2013. 26(2): p. 91-100.
45. Pei, A., Q. Zhou, and L.A. Berglund, Functionalized cellulose nanocrystals as biobased nucleation agents in poly (l-lactide)(PLLA)–Crystallization and mechanical property effects. Composites Science and Technology, 2010. 70(5): p. 815-821.
46. Girdthep, S., et al., Effect of plate-like particles on properties of poly (lactic acid)/poly (butylene adipate-co-terephthalate) blend: A comparative study between modified montmorillonite and graphene nanoplatelets. Composites Science and Technology, 2015. 119: p. 115-123.
47. Cao, X., et al., Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polymer Letters, 2008. 2(7): p. 502-510.
48. Jegan, A., et al., Synthesis and characterization of zinc oxide–agar nanocomposite. 2012.
49. Santos, T.M., et al., Fish gelatin films as affected by cellulose whiskers and sonication. Food Hydrocolloids, 2014. 41: p. 113-118.