بررسی تغییرات عصاره متانولی بذر خار مریم در شرایط تنش خشکی

نویسندگان
1 دانشجوی دکترا دانشگاه محقق اردبیلی
2 عضو هیئت علمی دانشگاه شهید بهشتی
3 عضو هیئت علمی دانشگاه محقق اردبیلی
چکیده
محتوای ترکیبات فیتوشیمیایی گیاهان دارویی شامل فنل­های کل، فلاونوئیدها، ترکیبات اسیدهای چرب و غیره عمدتا تحت تاثیر تنش خشکی واقع می شوند. در این پژوهش، اثر سطوح مختلف تنش آبی (آبیاری کامل درحد ظرفیت زراعی، آبیاری درحد 70درصد ظرفیت زراعی و آبیاری درحد 40درصد ظرفیت زراعی) بر میزان ترکیبات فیتوشیمیایی گیاه دارویی خارمریم مورد ارزیابی قرار گرفت. اندازه گیری رطوبت خاک به روش وزنی انجام شد و تنش خشکی در مرحله گلدهی به مدت 8 روز به گیاهان اعمال شد. سپس روغن گیری از بذور گیاهان به روش سوکسله و عصاره­گیری به روش متانول صورت گرفت. در مرحله بعد ترکیبات فیتوشیمیایی عصاره با استفاده از دستگاه GC-MS آنالیز شد. آنالیز پیک­های GC-MS حاکی از وجود 20 ترکیب در عصاره متانولی خارمریم بود. بیشترین ترکیب مشاهده شده در تیمارهای آبیاری در حد ظرفیت زراعی (8/75درصد) و 40درصد ظرفیت زراعی (7/73درصد) مربوط به اولئیک­اسید بوده درحالیکه در تیمار 70درصد ظرفیت زراعی مربوط به متیل‌لینولئات (5/22) بود. بجز اولئیک­اسید که در دو تیمار ظرفیت زراعی و 40درصد ظرفیت زراعی بیشترین مقدار را داشت، سایر ترکیبات در تیمار 70 درصد ظرفیت زراعی بیشترین میزان را نسبت به دو تیمار دیگر به خود اختصاص دادند. با توجه به نتایج، تنش ملایم (70 درصد ظرفیت زراعی) باعث افزایش اغلب ترکیبات فیتوشیمیایی گیاه می شود که احتمالا به دلیل تنظیم اسمزی سلول در گیاه در شرایط کم آبی باشد، اما در شرایط تنش شدید (40 درصد ظرفیت زراعی) این ترکیبات کاهش داشتند که احتمالا این متابولیت ها صرف تامین انرژی برای رشد و زنده مانی گیاه شده اند. طبق نتایج این پژوهش، از آنجایی که بذر این گیاه دارای ترکیبات فیتوشیمیایی با اهمیتی از جمله اسیدهای چرب، فیتواسترول ها، متیل استرها، فلاونوئیدها و غیره می باشد، لذا می توان ترکیبات فوق را پس از استخراج و خالص سازی، در صنایع غذایی، دارویی، بهداشتی و غیره استفاده نمود.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation of methanolic extract variations in milk thistle seeds under drought stress conditions

نویسندگان English

rahele ghanbari moheb seraj 1
masoud tohidfar 2
Mahdi Behnamian 3
Asadollah Ahmadikhah 2
Sara Dezhsetan 3
1 PhD Candidate of Mohaghegh Ardabili University
2 Faculty Member of Shahid Beheshti University
3 Faculty Member of Mohaghegh Ardabili University
چکیده English

The content of phytochemicals of medicinal plants including total phenols, flavonoids, fatty acid compounds, etc. are mainly affected by drought stress. In this study, the effects of different levels of water stress (Full irrigation at field capacity, irrigation at 70% of field capacity and irrigation at 40% of field capacity) on the phytochemicals of the medicinal plant of Milk thistle were evaluated. Soil moisture was measured by weight method and drought stress was applied to plants during the flowering stage for 8 days. Then, the seeds were oiled by Soxhlet and methanol extracted. Next, the phytochemicals of the extract were analyzed using GC-MS. GC-MS peak analysis indicated that 20 compounds were present in methanolic extract of Milk thistle. Oleic acid was the most abundant compound in irrigation treatments of Field Capacity (F.C) (75.8%) and 40%F.C. (73.7%), while methyl linoleate (22.5%) was highest in 70%F.C. Except of oleic acid, which had the highest amount in F.C and 40%F.C, the other compounds had the highest amount in 70%F.C compared to the other two treatments. According to the results, mild stress increased most of the plant's phytochemical compounds, possibly due to the osmotic regulation of the plant in dehydration. However, under extreme stress, these compounds were reduced, and these metabolites may have been used to provide energy for plant growth and survival. According to the results of this study, since the seeds of this plant have important phytochemical compounds such as fatty acids, phytosterols, methyl esters, flavonoids, etc. Therefore, the above compounds can be used in the food, pharmaceutical, health and other industries after extraction and purification.

کلیدواژه‌ها English

Water deficit
Fatty acids
Phytosterols
Methyl esters
flavonoids
1. Ahmadian A, Ghanbari A, Siahsar B, Haydari M, Ramroodi M, et al. (2011) Study of chamomiles yield and its components under drought stress and organic and inorganic fertilizers usage and their residue. Journal of Microbiology and Antimicrobials 3(2): 23-28.
2. Farahani HA, Valadabadi SA, Daneshian J, Shiranirad AH, Khalvati MA (2009) Medicinal and aromatic plants farming under drought conditions. Journal of Horticulture and Forestry 1(6): 086-092.
3. Tátrai ZA, Sanoubar R, Pluhár Z, Mancarella S, Orsini F, et al. (2016) Morphological and Physiological Plant Responses to Drought Stress in Thymus citriodorus. International Journal of Agronomy p. 8.
4. Saeidnejad AH, Kafi M, Khazaei HR, Pessarakli M (2013) Effects of drought stress on quantitative and qualitative yield and antioxidative activity of Bunium persicum. Turkish journal of Botany 37: 930-939.
5. Gnanasekaran N, Kalavathy S (2017) Drought Stress Signal Promote the Synthesis of more Reduced Phenolic Compounds (Chloroform Insoluble Fraction) in Tridax procumbens. Free Radicals and Antioxidants 7(1): 128-136.
6. Rajabbeigi E, Eichholz I, Beesk N, Ulrichs C, Kroh LW, et al. (2013) Interaction of drought stress and UV-B radiation-impact on biomass production and flavonoid metabolism in lettuce (Lactuca sativa L.). Journal of Applied Botany and Food Quality 86: 190-197.
7. Edreva A, Velikova V, Tsonev T, et al. Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol. 2008;34(1–2):67–78.
8. Abenavoli, L.; Izzo, A.A.; Milić, N.; Cicala, C.; Santini, A.; Capasso, R. Milk thistle (Silybum marianum): A concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother. Res. 2018, 32, 2202–2213.
9. Ramasamy K, Agarwal R (2008). Multitargeted therapy of cancer by Silymarin. Cancer Lett., 269: 352-362.
10. Huang MCH, Brenna JT (2001). On the relative efficacy of α-linolenic acid and preformed docosahexaenoic acid as substrates for tissue docosahexaenoate during perinatal development. Fatty Acids: Physiological and behavioral functions, edited by David I. Mostofsky, Shlomo Yehuda, and Norman Salem Jr., 6: 99.
11. Fathi-Achachlouei, B. and Azadmard-Damirchi, S. 2009. Milk thistle seed oil constituents from different varieties grown in Iran. Journal of the American Oil Chemists Society, 86: 643-649.
12. El-Mallah MH, El-Shami SM, Hassanein MM (2003). Detailed studies on some lipids of Silybum marianum (L.) seed oil. Grasasy Aceites, 54: 397-402.
13. Goli, E., Kadivar, M., Bahrami, B. Sabzalian, M. 2007. Physical and chemical properties of Milk thistle seed oil. Journal of Food Science and Technology, 4 (4): 27-32.
14. Alirezalo, K., Hesari, J., Alirezalo, A., Mohammadi, M., Fathi Achachloo, B. 2010. Investigation of Physicochemical Characteristics and Fatty Acid Composition of Milk thistle Seed Oil, Journal of Food Industry Research, 21 (1): 25-33.
15. Abreu IN and Mazzafera P. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant. Physiol. Biochem. 2005; 43(3):241-248.
16. Selmar D and Kleinwächter M. Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind Crop Prod. 2013; 42:558-566.
17. Hendawy SF, Hussein MS, Youssef AA and EL-Mergawi RA. Respnse of Silybum marianum plant to irrigation intervals combined with fertilization. Nusant Ara Bioscience. 2013; 5:22-29.
18. Ahmadpour, R., Armand, N., Hosseinzadeh, S. and Rigi, G. 2018. Effect of compost fertilizer on some photosynthetic parameters in three growth stages of lentil (Lens culinaris Medik) under drought stress. Journal of Plant Research, 31 (4): 916-926.
19. Rafiipour, M., Gholami, M. and Sarikhani, H. 2018. Effect of deficit irrigation on some morphological and physiological characteristics of three strawberry cultivars. Journal of Plant Research, 31 (4): 806-817.
20. Boutraa T, Akhkha A, Al-Shoaibi A, Alhejeli A (2010) Effect of water stress on growth and water use efficiency (WUE) of some wheat cultivars (Triticum durum) grown in Saudi Arabia. J Taibah Univ Sci 3:39-48. https://doi.org/10.1016/S1658-3655(12)60019-3
21. Krzyczkowska, J., Kozłowska, M. Effect of Oils Extracted from Plant Seeds on the Growth and Lipolytic Activity of Yarrowia lipolytica Yeast. J Am Oil Chem Soc 94, 661–671 (2017) doi:10.1007/s11746-017-2975-1
22. Haji Aghaei, R., Reza Zadeh, Sh., Ghafarzadegan, R., Mohammadnejad, A. and Tavakoli, M. 2018. On the effect of solvent consumption, input feed and the method of oiling in three standardized silly marines., Journal of Medicinal Plants, 17 (2): 167-176.
23. Salehi-Lisar SY, Bakhshayeshan-Agdam H (2016) Drought stress in plants: causes, consequences, and tolerance. In: Hossain, M.A., Wani, S., Burritt, D.J., Tran, L.S.P. (Eds.). Drought Stress Tolerance in Plants 1:1–16.
24. Wang, X., Devaiah, S.P., Zhang, W. and Welti, R. 2006. Signaling functions of phosphatidic acid. Progress in Lipid Research, 45:250-278.
25. Gasulla, F., Vom Dorp, K., Dombrink, I., Zahringer, U., Gisch, N., Dörmann, P. and Bartels, D. 2013. The role of lipid metabolism in the acquisition of desiccation tolerance in Craterostigma plantagineum: a comparative approach. The Plant Journal, 75:726741.
26. Okazaki, Y., Otsuki, H., Narisawa, T., Kobayashi, M., Sawai, S., Kamide, Y., Kusano, M., Aoki, T., Hirai, M.Y. and Saito, K. 2013b. A new class of plant lipid is essential for protection against phosphorus depletion. Nature Communications, 4:1510.
27. Roche, Y., Gerbeau-Pissot, P., Buhot, B., Thomas, D., Bonneau, L., Gresti, J., Mongrand, S., Perrier-Cornet, J., Simon-Plas, F., 2008. Depletion of phytosterols from the plant plasma membrane provides evidence for disruption of lipid rafts. J. Fed. Am. Soc. Exp. Biol. 22 (11), 3980e3991.
28. Kumar, Sujith & Ali, Kishwar & Dahuja, Anil & Tyagi, Aruna. (2015). Role of Phytosterols in Drought stress Tolerance in Rice. Plant physiology and biochemistry : PPB / Societe francaise de physiologie vegetale. 96. 83-89. 10.1016/j.plaphy.2015.07.014.
29. Zhao, L., Clarke, S.R., Sun, J. 2009. Methyl Palmitate, an Acaricidal Compound Occurring in Green Walnut Husks. J. Econ. Entomol. 102(1): 196-202.
30. McFarlane, J. E. 1968. Fatty acids, methyl esters and insect growth. Comp. Biochem. Physiol. 24: 377-384.
31. Pinto, M.E., Araújo, S.G., Morais, M.I., Sá, N.P., Lima, C.M., Rosa, C.A., Siqueira, E.P., Johann, S., & Lima, L.A. (2017). Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. Anais da Academia Brasileira de Ciencias, 89 3, 1671-1681.
32. Sharma, Upendra & Bala, Manju & Verma, Praveen & Rampal, Geetanjali & Kumar, Neeraj & Singh, Bikram & Arora, Saroj. (2011). Antimutagenic extract from Tinospora cordifolia and its chemical composition. Journal of Medicinal Plants Research. 4. 2488-2494.
33. Kumar, Vinay & Bhatnagar, A & Srivastava, J. (2011). Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compound. Journal of Medicinal Plants Research. 5. 10.5897/JMPR11.1175.
34. Verma, Suman & Gupta, Rajiv. (2013). Comparative estimation of β-sitosterol in roots, leaves and flowers of Clerodendrum infortunatum L.. International Journal of Green Pharmacy. 7. 131. 10.4103/0973-8258.116394.
35. Farrag, H.F. and Fawzy, M. 2012. Phytoremediation Potentiality of Cyperus articulatus L., Life Science Journal, 9(4):4032-4040.
36. Lampronti I, Martello D, Bianchi N, Borgatti M, Lambertini E, Piva R, Jabbar S, Choudhuri Msk, Khan Th And Gambari R. 2003. In vitro antiproliferative effects on human tumor cell lines of extracts from the Bangladeshi medicinal plant Aegle marmelos Correa. Phytomedicine 10: 300-308.
37. Oliveira, Ana. (2015). GC-MS analysis of esterified fatty acids obtained from leaves of wild and cultivated specimens of Leonotis nepetifolia. Journal of medicinal plant research. 10.5897/JMPR2014.5550.
38. Hadjiakhoondi, A., Vatandoost, H., Khanavi, M., Sadeghipour Roodsari, H., Vosoughi, M., Kazemi, M., Abai, M. (2006). Fatty Acid Composition and Toxicity of Melia azedarach L. Fruits against Malaria Vector Anopheles stephensi. Iranian Journal of Pharmaceutical Sciences, 2(2), 97-102.
39. Hammami, Saoussen & Bergaoui, Afifa & Amel, Bouzidi & Ciavatta, Maria & Cimino, Guido & Abreu, Pedro & Gannoun, Sana. (2011). Isolation and Structure Elucidation of Flavonol Glycosides, Methyl linoleate and Fatty Acids from Anacyclus cyrtolepidioïdes (Pomel) Growing in Tunisia. Analytical Chemistry Letters. (5&6). 384-392. 10.1080/22297928.2011.10648242.
40. Zhang, W., Wang, C., Qin, C., Wood, T., Olafsdottir, G., Welti, R. and Wang, X. 2003. The oleate-stimulated phospholipase D, PLDdelta, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell, 15:2285-2295.
41. Mondul, AM., Moore, SC., Weinstein, SJ., Karoly, ED., Sampson, JN., Albanes, D. 2015. Metabolomic analysis of prostate cancer risk in a prospective cohort: the alpha-tocolpherol, beta-carotene cancer prevention (ATBC) study. International Journal of Cancer, 137:2124–2132.
42. Tyagi, Tulika & Mala, Agarwal. (2017). Phytochemical and GC-MS analysis of bioactive constituents in the ethanolic of Pistia stratiotes L. and Eichhornia crassipes (Mart.) solms.. Journal of pharmacognosy and phytochemistry. 6. 195-206.
43. Shah, Ankita & Singh, Tribhuwan & Vijayvergia, Rekha. (2015). GC-MS ANALYSIS OF BIOACTIVE PHYTOCONSTITUENTS FROM RUMEX VESICARIUS L.. International Research Journal of Pharmacy. 6. 269-272. 10.7897/2230-8407.06459.
44. Sudha T, Chidambarampillai S and Mohan V.R GC-MS Analysis of Bioactive Components of Aerial parts of Fluggea leucopyrus Willd. (Euphorbiaceae). J App Pharm Sci. 2013; 3 (05): 126-130.
45. Tundis, Rosa & Bonesi, Marco & Menichini, Federica & Loizzo, Monica & Conforti, Filomena & Statti, Giancarlo & Pirisi, Filippo & Menichini, Francesco. (2012). Antioxidant and Anti-cholinesterase Activity of Globularia meridionalis Extracts and Isolated Constituents. Natural product communications. 7. 1015-20.
46. Autore, G., Marzocco, S., Formisano, C., Bruno, M., Rosselli, S., Jemia, M. B., & Senatore, F. (2015). Cytotoxic activity and composition of petroleum ether extract from Magydaris tomentosa (Desf.) W. D. J. Koch (Apiaceae). Molecules (Basel, Switzerland), 20(1), 1571–1578. doi:10.3390/molecules20011571
47. Ramalakshmi, S., & Muthuchelian, K. (2011). Analysis of bioactive constituents from the leaves of Mallotus tetracoccus (roxb.) Kurz, by gas chromatography-mass spectrometry. International Journal of Pharmaceutical Sciences and Research, 2(6), 1449.‌
48. Pham-Thi AT, Borrel-Flood C, Vieira da Silva J, Justin AM, Mazliak P. 1985. Effects of water stress on lipid metabolism in cotton leaves. Phytochemistry 24: 723–727.
49. Monteiro de Paula F, Pham Thi AT, Zuily Fodil Y, Ferrari-Iliou R, Vieira da Silva J, Mazliak P. 1993. Effect of water stress on the biosynthesis and degradation of polyunsaturated lipid molecular species in leaves of Vigna unguiculata Plant Physiology and Biochemistry 31: 707–715.
50. Pham-Thi AT, Borrel-Flood C, Vieira da Silva J, Justin AM, Mazliak P. 1987. Effects of drought on [1-14C]-oleic and [1-14C]-linoleic acid desaturation in cotton leaves. Physiologia Plantarum 69:147–150.
51. Monteiro de Paula F, Pham Thi AT, Vieira da Silva J, Justin AM, Demandre C, Mazliak P. 1990. Effects of water stress on the molecular species composition of polar lipids from Vigna unguiculata L. leaves. Plant Science 66: 185–193.
52. Ferrari-Iliou R, d'Arcy-Lameta A, Pham-Thi AT, Zuily-Fodil Y, Mazliak P. 1994. Effect of drought on photodynamic peroxidation of leaf total lipophilic extracts. Phytochemistry 37: 1237–1243.
53. Sahsah Y, Campos P, Gareil M, Zuily-Fodil Y, Pham-Thi AT. 1998. Enzymatic degradation of polar lipids in Vigna unguiculata leaves and influence of drought stress. Physiologia Plantarum 104: 577–586.
54. El Maarouf H, Zuily-Fodil Y, Gareil M, d'Arcy-Lameta A, Pham-Thi AT. 1999. Enzymatic activity and gene expression under water stress of phospholipase D in two cultivars of Vigna unguiculata (L.). Plant Molecular Biology 39: 1257–1265.
55. Matos AR, d'Arcy-Lameta A, França M, Petres S, Edelman L, Kader J, Zuily-Fodil Y, Pham-Thi AT. 2001. A novel patatin-like gene stimulated by drought stress encodes a galactolipid acyl hydrolase. FEBS Letters 491: 188–192.
56. Gigon, A., Matos, A. R., Laffray, D., Zuily-Fodil, Y., & Pham-Thi, A. T. (2004). Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Annals of botany, 94(3), 345–351. doi:10.1093/aob/mch150
57. Gahlaut, Anjum & Shirolkar, Amey & Hooda, Vikas & Dabur, Rajesh. (2013). β-Sitosterol in different parts of Saraca asoca and herbal drug ashokarista: Quali-quantitative analysis by liquid chromatography-mass spectrometry. Journal of advanced pharmaceutical technology & research. 4. 146-150. 10.4103/2231-4040.116783.
58. Azeez, Rand & Abaas, Ibrahim & Kadhim, Enas. (2018). Isolation and characterization of β-sitosterol from elaeagnus angustifolia cultivated in iraq. Asian Journal of Pharmaceutical and Clinical Research. 11. 442. 10.22159/ajpcr.2018.v11i11.29030.
59. Sajfrtová, M., Ličková, I., Wimmerová, M., Sovová, H., & Wimmer, Z. (2010). β-Sitosterol: Supercritical carbon dioxide extraction from sea buckthorn (Hippophae rhamnoides L.) seeds. International journal of molecular sciences, 11(4), 1842-1850.‌
60. Anwar, Farooq & Latif, Sajid & Ashraf, Muhammad & Gilani, Anwar-ul. (2007). Moringa oleifera: A food plant with multiple medicinal uses. Phytotherapy research : PTR. 21. 17-25. 10.1002/ptr.2023.
61. Becker M, Staab D, Von Bergman K. Long‑term treatment of severe familial hypercholesterolemia in children: Effect of sitosterol and bezafibrate. Pediatrics 1992;89:138‑42.
62. Best MM, Duncan CH. Modification of abnormal serum lipid patterns in atherosclerosis by administration of sitosterol. Ann Intern Med 1956;45:614‑22.
63. Trautwein EA, Demonty I. Phytosterols: Natural compounds with established and emerging health benefits. Oléagineux Corps Gras Lipides 2007;14:259-66
64. Cicero AF, Fiorito A, Panourgia MP, Sangiorgi Z, Gaddi A (2002). Effects of a new soy/beta-sitosterol supplement on plasma lipids in moderately hypercholesterolemic subjects. J. Am: Diet Assoc. 102: 1807-11.
65.