اثر اگزالیک‌اسید بر ویژگی‌های کیفی و بیوشیمیایی میوه ازگیل‌ژاپنی (Eriobotrya japonica Lindl.) طی مدت انبارداری

نویسندگان
1 عضو هیات علمی دانشگاه جیرفت
2 استادیار پژوهش پژوهشکده مرکبات و میوه های نیمه گرمسیری
چکیده
اسیداگزالیک به‌عنوان یک پاداُکسنده طبیعی رسیدن و پیری میوه را به‌تأخیر می‌اندازد. در این پژوهش اثر غلظت‌های مختلف اسیداگزالیک (0، 2، 4، 6 و 8 میلی‌مولار) بر قابلیت انبارمانی و کیفیت پس از برداشت میوه ازگیل‌ژاپنی طی 28 روز انبارداری در دمای 5 درجه‌سانتی‌گراد و رطوبت‌نسبی 5±90 درصد مورد بررسی قرار گرفت. صفاتی مانند شاخص قهوه‌ای‌شدن، ویژگی‌های بیوشیمیایی و کیفی و فعالیت آنزیم‌های پلی‌فنل اکسیداز(PPO) و پراکسیداز (POD) میوه در زمان برداشت (0)، 7، 14، 21 و 28 روز پس از شروع انبارداری ارزیابی شد. با افزایش مدت انبارداری میزان شاخص قهوه‌ای‌شدن، مواد جامد محلول (TSS)، نسبت TSS به اسیدیته قابل تیتراسیون (TA) و فعالیت آنزیم‌های PPO و POD در همه تیمارها افزایش یافت (p˂0.05)، درحالی‌که میزان سفتی بافت میوه، TA، اسیدآسکوربیک، فنل و فلاونوئید کل و ظرفیت پاداُکسندگی میوه کاهش یافت (p˂0.05). کاربرد اسیداگزالیک میزان شاخص قهوه‌ای‌شدن و فعالیت آنزیم‌های مسئول قهوه‌ای‌شدن میوه (PPO و POD) را به‌طور معنی‌داری در مقایسه با شاهد کاهش داد (p˂0.05). در پایان مدت انبارداری میوه‌های تیمار شده با غلظت‌های مختلف اسیداگزالیک بافت سفت‌تر و میزان اسیدآسکوربیک، فنل و فلاونوئید کل و ظرفیت پاداُکسندگی بیشتری در مقایسه با میوه‌های گروه شاهد داشتند (p˂0.05). در کل، کاربرد اسیداگزالیک بطور موثری نرم‌شدن بافت میوه و شاخص قهوه‌ای‌شدن را با کم کردن فعالیت آنزیم‌های PPO و POD در طول مدت انبارداری کاهش داد (p˂0.05). بنابراین تیمار اسیداگزالیک (6 میلی‌مولار) می‌تواند به عنوان یک روش مؤثر در انبارداری میوه ازگیل‌ژاپنی مورد استفاده قرار گیرد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of oxalic acid on the quality biochemical characteristics of loquat (Eriobotrya japonica Lindl.) fruit during storage

نویسندگان English

Hossein Meighani 1
Abuzar Hashempour 2
1 Faculty member, university of Jiroft
2 Research Assistant Professor, Citrus and Subtropical Fruits Research Center
چکیده English

Oxalic acid (OA), as a natural antioxidant, delays the ripening and senescence of fruits. In this research, the effect of different concentration of OA (0, 2, 4, 6, and 8 mM) investigated on storage life and postharvest quality of loquat fruit at 5°C and 90±5% relative humidity for 28 days. Traits such as browning index, biochemical and qualitative characteristics and activity of polyphenol oxidase (PPO) and peroxidase (POD) enzymes of fruit at harvest (0), 7, 14, 21 and 28 days after storage were analyzed. With increasing storage time, the level of browning index, total soluble solids (TSS), ratio of TSS/titratable acidity (TA) and the activity of PPO and POD enzymes increased in all treatments, while firmness, ascorbic acid, total phenol and flavonoids content and antioxidant activity decreased (p˂0.05). OA application significantly reduced the level of browning index and the activity of enzymes responsible for tissue browning (PPO and POD) compared to control (p˂0.05). At the end of storage, fruits treated with different concentration of OA had a more firmness tissue and higher level of ascorbic acid, total phenol and flavonoids content and antioxidant activity in comparison to the control fruits (p˂0.05). Overall, OA application effectively reduced fruit softening and browning index with diminished the activity of PPO and POD enzymes during cold storage. Thus, OA treatment (6 mM) can be used as an effective method for cold storage of loquat fruit.

کلیدواژه‌ها English

Antioxidant activity
Browning
Peroxidase
Polyphenol oxidase
Total Phenol
[1] Pareek, S., Benkeblia, N., Janick, J., Cao, S. and Yahia, E.M. 2014. Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit. Journal of the Science of Food and Agriculture, 94: 1495–1504.
[2] Anonymous. 2017. Statistical book of agricultural of Iran. Iranian Statistical Centre, Tehran, Iran. [In Persian]
[3] Xu, M., Dong, J., Zhang, M., Xu, X. and Sun, L. 2012. Cold-induced endogenous nitric oxide generation plays a role in chilling tolerance of loquat fruit during postharvest storage. Postharvest Biology and Technology, 65: 5–12.
[4] Rahimkhani, R., Varasteh, F. and Seifi, E. 2016. Evaluation of genetic diversity in some loquat genotypes based on pomological characteristics in Golestan province. Journal of Plant Production Research, 23(1): 157-177. [In Persian]
[5] Rahimkhani, R., Varasteh, F. and Seifi, E. 2017. Comparison of fruit biochemical and qualitative attributes of loquat genotypes (Eriobotrya japonica L.) of Gorgan. Iranian Journal of Horticultural Science, 48(2): 413-421. [In Persian]
[6] Oz, A.T. and Ulukanli, Z. 2011. Effects of 1-methylcylopropene (1-MCP) and modified atmosphere packing (MAP) on postharvest browning and microbial growth of loquat fruit. Journal of Applied Botany and Food Quality, 84: 125–133.
[7] Oz, A.T., Kafkas, E. and Bozdogan, A. 2016. Combined effects of oxalic acid treatment and modified atmosphere packaging on postharvest quality of loquats during storage. Turkish Journal of Agriculture and Forestry, 40: 433-440.
[8] Ashournezhad, M. and Ghasemnezhad, M. 2012. Effects of cellophane-film packaging and cold storage on the keeping quality and storage life of loquat fruit (Eriobotrya japonica). Iranian Journal of Nutrition Sciences and Food Technology, 7(2): 95-102. [In Persian]
[9] Huang, H., Zhu, Q., Zhang, Z., Yang, B., Duan, X. and Jiang, Y. 2013. Effect of oxalic acid on antibrowning of banana (Musa spp., AAA group, cv. ‘Brazil’) fruit during storage. Scientia Horticulturae, 160: 208–212.
[10] Cai, C., Xu, C.J., Li, X., Ferguson, I. and Chen, K.S. 2006. Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biology and Technology, 40: 163–169.
[11] Li, J., Han, Y., Hu, M., Jin, M. and Rao, J. 2018. Oxalic acid and 1-methylcyclopropene alleviate chilling injury of Youhou sweet persimmon during cold storage. Postharvest Biology and Technology, 137: 134–141.
[12] Loay, A.A. and Dawood, H.D. 2017. Minimize browning incidence of banana by postharvest active chitosan/PVA Combines with oxalic acid treatment to during shelf-life. Scientia Horticulturae, 226: 208–215.
[13] Zheng, X. and Tian, S. 2006. Effect of oxalic acid on control of postharvest browning of litchi fruit. Food Chemistry, 96: 519–523.
[14] AOAC, 2000. Vitamins and other nutrients (Chapter 45). In official methods of analysis (17th ed.), Washington, D.C.
[15] Singleton, V.L., Orthofer, R. and Lamuela-Ranventos, R.M. 1999. Analysis of total phenols other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymology, 299: 152–178.
[16] Du, G., Li, M., Ma, F. and Liang, D. 2009. Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chemistry, 113: 557–562.
[17] Brand-Williams, W., Cuvelier, M.E. and Berset, C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT- Food Science and Technology, 28: 25–30.
[18] Jung, S.K. and Watkins, C.B., 2011. Involvement of ethylene in browning development of controlled atmosphere-stored ‘Empire’ apple fruit. Postharvest Biology and Technology, 59: 219–226.
[19] Xie, J.H., Chai, T.T., Xu, R., Liu, D., Yang, Y.X., Deng, Z.C., Jin, H. and He, H. 2017. Induction of defense-related enzymes in patchouli inoculated with virulent Ralstonia solanacearum. Electronic Journal of Biotechnology, 27: 63–69.
[20] Vidhan, J., Ara, D. and John, R.P. 2010. Anthocyanins and polyphenol oxidase from dried arils of pomegranate (Punica granatum L.). Food Chemistry, 118: 11–16.
[21] Razzaq, K., Sattar-Khan, A., Ullah-Malik, A., Shahid, M. and Ullah, S. 2015. Effect of oxalic acid application on Samar Bahisht Chaunsa mango during ripening and postharvest. LWT-Food Science and Technology, 63: 152-160.
[22] Ghasemnezhad, M., Ashour-Nezhad, M. and Gerailoo, S. 2011. Changes in postharvest quality of loquat (Eriobotrya japonica) fruits influenced by chitosan. Horticulture, Environment and Biotechnology, 52(1): 40–45.
[23] Petriccione, M., Pasquariello, M.S., Mastrobuoni, F., Zampella, L., Di-Patre, D. and Scortichini, M. 2015. Influence of a chitosan coating on the quality and nutraceutical traits of loquat fruit during postharvest life. Scientia Horticulturae, 197: 287–296.
[24] Ding, Z.S., Tiana, S.P., Zhenga, X.L., Zhoua, Z.W. and Xu, Y. 2007. Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress. Physiologia Plantarum, 130: 112–121.
[25] Wang, Y., Shan, Y., Chen, J., Feng, J., Huang, J., Jiang, F., Zheng, S. and Qin, Q. 2016. Comparison of practical methods for postharvest preservation of loquat fruit. Postharvest Biology and Technology, 120: 121–126.
[26] Suttirak, W. and Manurakchinakorn, S. 2010. Potential application of ascorbic acid, citric acid and oxalic acid for browning inhibition in fresh-cut fruits and vegetables. Walailak Journal of Science and Technology, 7(1): 5‐14.
[27] Kumari, P., Barman, K., Patel, V.B., Siddiqui, M.W. and Kole, B. 2015. Reducing postharvest pericarp browning and preserving health promoting compounds of litchi fruit by combination treatment of salicylic acid and chitosan. Scientia Horticulturae, 197: 555–563.
[28] Lu, X., Sun, D., Li, Y., Shi, W. and Sun, G. 2011. Pre- and post-harvest salicylic acid treatments alleviate internal browning and maintain quality of winter pineapple fruit. Scientia Horticulturae, 130: 97–101.