ارزیابی خواص آنتی‌اکسیدانی سلنیوم ریزپوشانی‌شده در روغن سویای تصفیه‌شده عاری از آنتی‌اکسیدان

نویسندگان
1 گروه علوم و صنایع غذایی، دانشگاه ازاد اسلامی واحد اصفهان، اصفهان، ایران
2 گروه علوم و صنایع غذایی، دانشگاه ازاد اسلامی اصفهان، اصفهان، ایران
چکیده
چکیده

تحقیقات بسیاری پیرامون جایگزین کردن آنتی‌اکسیدان‌های سنتزی با آثار تغذیه‌ای سوء صورت گرفته است. این تحقیق به بررسی اثر آنتی‌اکسیدانی سلنیت سدیم ریزپوشانی شده در به تأخیر‌اندازی اکسیداسیون روغن سویا پرداخت. ریزپوشانی 15000 پی­پی­ام سلنیت سدیم با صمغ عربی (25، 26، 27، 28، 29%)، صمغ فارسی (متناظر با صمغ عربی مصرفی بترتیب شامل 5، 4، 3، 2، 1%) و از نسبت حلال اتانول 96% به مخلوط صمغ و سلنیت سدیم (4، 6، 8، 10، 12) استفاده شد. فرمول بهینه­ اول (صمغ عربی29%، صمغ فارسی 1% و نسبت اتانول به مخلوط 12 به 1 با کارایی ریزپوشانی 94%، اندازه­ ذرات 9/64 میکرومتر) و فرمول بهینه­ دوم (صمغ عربی 27%، صمغ فارسی 3% و نسبت اتانول به مخلوط 10 به 1 با کارایی ریزپوشانی 4/84%، اندازه‌ ذرات 74 میکرومتر) انتخاب شد. نمونه‌های بهینه (6/180پی‌پی‌ام)، بوتیل هیدروکسی آنیزول (200پی‌پی‌ام)، سلنیت سدیم فاقد کپسول (6/8 پی‌پی‌ام معادل سلنیوم کپسول‌های بهینه) به روغن سویای فاقد آنتی‌اکسیدان اضافه شد و دما و زمان نگهداری روغن سویا در انکوباتور با کمک برنامه‌ شتابدهنده شلف لایف (55 درجه سانتی گراد و 0، 23، 44 روز) معادل با انبارداری (20 درجه سانتی گراد و 0، 180، 360 روز) تنظیم گردید و شاخص­های اکسیداسیون مقایسه شد. با افزایش درصد صمغ عربی و نسبت اتانول به مخلوط، کارایی افزایش و سایز ذرات کاهش یافت. سلنیوم کپسوله شده همانند بوتیل هیدروکسی آنیزول منجر به افزایش فعالیت آنتی‌اکسیدانی و کاهش شاخص‌های اکسیداسیون روغن سویا گردید. بررسی فعالیت آنتی‌اکسیدانی حداکثری در بازه‌ یکساله‌ نگهداری به شرح زیر بود. بهینه اول (رهایش تدریجی) > بهینه دوم = بوتیل هیدروکسی آنیزول > سلنیت­سدیم کپسول نشده (مصرف آنی) > شاهد (فاقد آنتی‌اکسیدان).
کلیدواژه‌ها

عنوان مقاله English

Evaluation of antioxidant properties of sodium-selenite microencapsulated in antioxidant-free soybean oil refined

نویسندگان English

Sanaz Abbasi 1
Mohammad Goli 2
1 Department of Food Science & Technology, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
2 Department of Food Science & Technology, Isfahan(Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
چکیده English

Much research has been done approaching replacing synthetic antioxidants with adverse nutritional effects. In this study, the antioxidant effect of microencapsulated sodium selenite in delaying oxidation of soybean oil was investigated. Microencapsulation of sodium-selenite was carried out, comprising the following combination: Arabic gum (25, 26, 27, 28, and 29%) and a corresponding amount of Farsi gum (corresponding to Arabic gum, respectively 1, 2, 3, 4, and 5%) using the solvent (ethanol with purity 96% ) evaporation method. The ratio of ethanol to the mix solution [combination gum + sodium selenite] was (4, 6, 8, 10, and 12). Finally, optimal formula1 (EE 94%, particle-size 64.9µm, Arabic gum 29%, Farsi gum 1%, and the ratio of ethanol to the mix solution 12 ) and the optimal formula2 (EE 84.4%, particle-size 74µm, Arabic gum 27%, Farsi gum 3%, and the ratio of ethanol to the mix solution 10) were selected. Consequently, the two selected optimal formulas (180.6PPM), the BHA(200PPM), and the un-microencapsulated sodium-selenite (8.6PPM) were added to antioxidant-free soybean oil and then were placed at the 55℃ for (0, 23, 46 days) equal to 20℃ (0, 180, 360 days) by shelf-life accelerator program. The oxidation indices were compared with soybean oil that did not contain any anti-oxidant. EE increased and particle size decreased with increasing Arabic gum levels and the ethanol to mix solution ratio. Encapsulated selenium, such as BHA, increased antioxidant activity and decreased soybean-oil oxidation indices. The effective and propositional treatments are presented in the following order respectively: blank (antioxidant-free) < un-microencapsulated sodium-selenite < BHA = Opt2 < Opt1.

کلیدواژه‌ها English

Sodium selenite
Microencapsulation
Solvent Evaporation Method
response surface methodology
Oxidation indices
[1] Rahman, Z., Habib, F., Shah, W. 2004. Utilization of potato peels extract as a natural antioxidant in soybean oil. Journal of Food Chemistry, 85: 215-220.
[2] Mirnezami Ziabari, H. 2009. Oil technology and refinery. Iranian Journal of Agricultural Science, 467. [In Persian].
[3] Hammond, E. G., Johnson, L. A., Su, C., Wang, T., White, P. J. 2005. Soybean oil. John Wiley & Sons. New Jersey. Bailey's Industrial Oil and Fat Products (6ed), 577-672.
[4] Hui, Y H. 1996. Bailey’s Industrial Oil and Fat Products (5ed). John Wiley & Sons. New York. Vol 2 & 4.
[5] Namiki, M. 1990. Antioxidants, antimutagens in food. Journal of Critical Reviews in Food Science and Nutrition, 29(4): 273-300.
[6] Kahl, R., Kappus, H. 1993. Toxicity of synthetic antioxidants BHT and BHA in comparison with natural antioxidants vitamin E. Zeitschrift fur Lebensmittel-Untersuchung und Forschung, 196, 329-338.
[7] Ortega-Ramirez, L. A., Rodriguez-Garcia, I., Leyva J. M., Cruz-Valenzuela, M. R., Silva- Espinoza, B. A., Gonzalez- Aguilar, G. A., Ayala-Zavala, J. F. 2014. Potential of medicinal plants as antimicrobial and antioxidant agents in food industry: a hypothesis. Journal of food science, 79(2), 129-137.
[8] Martínez, M. L., Penci, M. C., Ixtaina, V., Ribotta, P. D., Maestri, D. 2013. Effect of natural and synthetic antioxidants on the oxidative stability of walnut oil under different storage conditions. LWT - Food Science and Technology, 51(1): 44-50.
[9] Schwatrz, S. 1976. Essentiality and metabolic function of Selenium. Medical Clinics of North America, 60:745-58.
[10] Rayman, M. P. 2000. The importance of selenium to human health. Lancent, 356(9225), 233-241.
[11] Spallholz, J. E. 2001. Selenium and the prevention of cancer. The Bulletin of Selenium-Tellurium Development Association, 1-6.
[12] Patrick, L. 2004. Selenium biochemistry and Cancer: a review of literature. Alternative Medicine Review, 9(3): 238-58.
[13] Ursini, P., Heim, S., Kiess, M., Maiorino, M., Roveri, A., Wissing, J. 1999. Dual function of the selenoprotein PHGPx during sperm maturation. Science, 285(5432): 1393-6.
[14] Brody, T. 1999. Nutritional biochemistry (2ed). San Diego: Academic Press; p. 837.
[15] Loksuwan, J. 2007. Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocolloids, 21, 928-935.
[16] Richmond, F. L., Moss, R. D. 1983. Vitamin encapsulation. US Patent-4389419, 6-1.
[17] Gupta, C., Chawla, P., Arora, S., Tomar, S. K., Singh, A. K. 2015. Iron microencapsulation with blend of gum arabic, maltodextrin and modified starch using modified solvent evaporation method – Milk fortification. Food Hydrocolloids, 43, 622-628.
[18] McNamee, B. F., O’Riorda, E. D., O’Sullivan, M. 2001. Effect of partial replacement of gum arabic with carbohydrates on its microencapsulation properties. Journal of agricultural and food chemistry, 49(7): 3385-3388.
[19] Trindade, M. A., Grosso, C. R. F. 2000. The stability of ascorbic acidmicroencapsulated in granules of rice starch and in gum arabic. Journal of Microencapsulation, 17(2): 169-176.
[20] AOAC. 2005. Official methods of analysis of the Association of Analytical Chemists International (18th Ed.): 481. North Fredrick Avenue Gaithersburg, Maryland, USA.
[21] Farag, R. S., Mahmoud, E. A., & Basuny, A .M. 2007. Use crude olive leaf juice as a natural antioxidant for the stability of sunflower oil during heating. International Journal of Food Science & Technology, 42(1): 107-115.
[22] Firestone, D. 1994. AOCS, Official methods and recommended practices of the American Oil Chemists' Society. 4th Ed.: AOCS Press, Champaign.
[23] Egan, H., Kirk, S., & Sawyer, R. 1997. Pearson's composition and analysis of foods London: (9th Ed.) Longman Scientific and Technical Group Ltd. 609-634.
[24] Tompkins, C., & Perkins, E .G. 1999. The evaluation of frying oils with the p-Anisidine value. Journal of the American Oil Chemists' Society, 76(8): 945-947.
[25] Wanasundara, P. K. J. P. D., & Shahidi, F. 2005. Antioxidants: Science, Technology, and Applications. Bailey's Industrial Oil and Fat Products.
[26] Institute of Standards and Industrial Research of Iran, the method of measuring the acidity in edible oils and fats. ISIRI no 4178. ISIRI; 1999. P. 1-7. [In Persian].
[27] Ghanbari, R., Ghavami, M., & Safafar, H. 2006. Evaluation of the possibility of natural antioxidant production from salvia officinalis increase shelf life of oily, canola, cottonseed oil. Journal of Food Science and Technology, 3, 18-26. [In Persian].
[28] Labuza, T. P., & Schmidl, M. K. 1985. Accelerated shelf-life testing of foods. Food technology (USA), 39(9): 57-64.
[29] Robertson, G. L. 2012. Food packaging: principles and practice, Shelf Life of Foods: CRC press, Chapter 12, 329-63.
[30] Zilberboim, R., Kopelman, I. J., Talmon, Y. 1986. Microencapsulation by a dehydrating liquid: retention of paprika oleoresin and aromatic esters. Journal of Food science, 51(5): 1301-1306.
[31] Pakzad, H., Alemzadeh, I., Kazemi, A. 2013. Encapsulation of peppermint oil with Arabic gum-gelatin by complex coacervation method. International Journal of Engineering, 26(8): 807-814.
[32] Fernandes, R. V. B., Borges, S. V., Botrel, D. A. 2014. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary oil. Carbohydrate Polymers, 101: 524-532.
[33] Premi, M., Sharma, H. K. 2017. Effect of different combinations of maltodextrin, gum arabic and whey protein concentrate on the encapsulation behaviour and oxidative stability of spray dried drumstick (Moringa oleifera) oil. International Journal of Biological Macromolecules, 105(1): 1232-1240.
[34] Kabiri, S., & Sayyed-Alangi, S. Z. 2015. Comparison of Antioxidant effect of different extracts from Melissa officinalis leaves with immersion and microwave-assisted extractions and its oxidative stability on soybean oil. Innovative Food Technologies, 2(4), 23-38. [In Persian].
[35] Mojerloo, z., Elhamirad, A. H., Najafi, A. 2015. The study of the antioxidative effect of the ethanolic extract of the olive meal on the oxidative stability of soybean oil compared to some chemical antioxidants. Journal of Innovation in Food Science and Technology, 3: 15-23. [In Persian].
[36] Chang, S., Bassiri, A., Jalali, H. 2013. Evaluation of antioxidant activity of fennel (Foeniculum vulgare) seed extract on oxidative stability of olive oil. Journal of Chemical Health Risks, 3(2): 53-61.
[37] Ben-Ali, M., Dhouib, K., Damak, M., & Allouche, N. 2014. Stabilization of sunflower oil during accelerated storage: use of basil extract as a potential alternative to synthetic antioxidants. International journal of food properties, 17(7), 1547-1559.
[38] Calvo, P., Castan˜o AL, Lozano M., Gonza´lez-Go´mez, D. 2012. Influence of themicroencapsulation on the quality parameters and shelf-life of extra-virgin olive oil encapsulated in the presence of BHT and different capsule wall components. Food Research International, 45(1): 256-61.
[39] Mohammadi, A., Jafari, SM., Esfanjani, A. F., Akhavan S. 2016. Application of nano-encapsulated olive leaf extract in controlling the oxidative stability of soybean oil. Food Chemistry, 190: 513-519.
[40] Batool, M., Nadeem, M., Imran, M., Gulzar, N., Shahid, M. Q., Shahbaz, M., Khan, I.T. 2018. Impact of vitamin E and selenium on antioxidant capacity and lipid oxidation of cheddar cheese in accelerated ripening. Lipids in health and disease, 17(1): 79.
[41] Doleschall, F., Kemeny, Z., Recseg, K., Kovari, K. 2002. A new analytical method to monitor lipid peroxidation during bleaching. European Journal of Lipid Science and Technology, 104:14-18.
[42] Sun-Waterhouse, D., Penin-Peyta, L., Wadhwa, S. S., & Waterhouse, G. I. N. 2012. Storage stability of phenolic fortified Avocado oil encapsulated using different polymer formulations and co-extrusion technology. Food and Bioprocess Technology, 5(8): 3090-3102.
[43] Fathollahi, A., & Keramat, j. 2017 May. Anti-oxidative activities of carrot and beet extract on soybean oil. Paper presented at the 1st National Conference on New Technologies in Food Science and Tourism, Sari. [In Persian].
[44] Pokorny, J., Yanishlieva, N., Gordon M. 2001. Antioxidants in Food: Practical application. Cambridge: Woodhead Publishing Ltd and CRC Press LLC, pp. 311-330.
[45] Shahidi, F. 2005. Bailey’s Industrial Oil and Fat Products (6th Ed), John Wiley & Sons Inc., simultaneously in Canada, 1-3687.
[46] Roshan, M., Esmaeel-zade Kenari, R. 2017. Antioxidant effect of strawberry leaves extracts on stabilization of sunflower oil during storage condition. Iranian Journal of Food Science and Technology; 65(14): 301-309. [In Persian].
[47] Fadavi, A., & Koohsari, H. 2015. Antioxidant and antimicrobial effects of orange (Citrus sinensis) leaves extract cultivated in Iran and stability investigation of soybean oil enriched with that. Innovative Food Technologies, 2(3), 85- 96. [In Persian].
[48] Queiroz, Y. S., Ishimoto, E., Bastos, D. H. M., Sampaio, G. R. 2009. Garlic and ready to eat garlic products. Journal of food chemistry, 115: 371-374.
[49] Almasi, H. 2016. Comparison of direct addition and using of antioxidant active film containing nettle leaves extract in oxidative stability of soybean oil. Journal of Food Research, 26(3): 411-427. [In Persian].
[50] Ortiz-Vazquez, H., Shin, J., Soto-Valdez, H., Auras, R. 2011. Release of butylated hydroxytoluene (BHT) from poly (Lactic acid) films. Polymer testing, 30: 463-471.