بررسی مقایسه ای اثر بازدارندگی و کشندگی عصاره برگ گیاه نوروزک (Salvia leriifolia) حاصل از روش‌های استخراج متداول با حلال و سیال فوق داغ بر برخی از میکروارگانیسم‌های مواد غذایی

نویسندگان
1 دانشیار، گروه زیست فناوری مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد، ایران
2 دانشجوی دکتری، گروه فرآوری مواد غذایی، موسسه پژوهشی علوم و صنایع غذایی
3 استادیار، گروه زیست شناسی، دانشکده علوم پایه، دانشگاه فرهنگیان، مشهد، ایران
چکیده
در این پژوهش استخراج عصاره از برگ نوروزک با دو روش استخراج متداول با حلال (دمای استخراج 70 ؛ 80 و 90 درجه سانتی­گراد، زمان استخراج 30، 75 و 120 دقیقه و نسبت حلال آب به اتانول 50 به 50، 60 به 40 و 70 به 30) و استخراج با سیال فوق داغ (دمای استخراج 130، 145 و 160 درجه سانتی­گراد، زمان استخراج 10 ، 20 و30 دقیقه و نسبت حلال آب به اتانول 60 به 40، 80 به 20 و 100 به 0) انجام شد و قدرت ضدمیکروبی عصاره‌های استخراج شده روی چند میکروارگانیسم شاخص در مواد غذایی با روش تعیین حداقل غلظت بازدارندگی رشد و حداقل غلظت کشندگی میکروارگانیسم­ها ارزیابی گردید. نتایج نشان داد در هر دو روش استخراج، کمترین غلظت جهت جلوگیری از رشد اکثر میکروارگانیسم­های مورد آزمون 5/0 میلی­گرم بر میلی­لیتر بود؛ این در حالی است که حداقل غلظت کشندگی، بسته به نوع میکروارگانیسم بین 5 تا 500 میلی­گرم بر میلی­لیتر متغیر بود. در روش استخراج متداول با حلال، تیمار شامل دمای 80 درجه سانتی­گراد، زمان 75 دقیقه و نسبت مساوی از دو حلال و در روش استخراج با سیال فوق داغ تیمار شامل دمای 160 درجه سانتی­گراد، زمان 20 دقیقه و نسبت حلال آب به اتانول 80 به 20، بیشترین خاصیت ضدمیکروبی را نشان دادند. با توجه به نتایج بدست آمده می­توان اظهار نمود نوع روش استخراج عصاره ترکیبات گیاهی، تأثیر بسزایی در مهار یا جلوگیری از رشد میکروارگانیسم­های عامل فساد یا بیماری در مواد غذایی داشته و در صورت بهینه­یابی هر یک از روش­های استخراج ، می­توان از عصاره حاصل بیشترین استفاده را جهت افزایش زمان ماندگاری مواد غذایی بکار برد.
کلیدواژه‌ها

موضوعات


عنوان مقاله English

Comparative study on the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the Salvia leriifolia leaf extract using traditional and superheated solvent extraction on some of the food microorganisms

نویسندگان English

Mahboobe Sarabi Jamab 1
Mona Kaveh 2
Masoumeh Modarres 3
1 Research Institute of Food Science and Technology (RIFST)
2 PhD Student, Food Processing Department, Research Institute of Food Science and Technology (RIFST)
3 Department of Biology, Faculty of basic Science, Farhangian University, Mashhad,
چکیده English

In this research extraction of Salvia leriifolia leaf was carried out using two extraction methods including traditional solvent extraction (with different solvent ratio of water /ethanol 50:50, 60:40 and 70:30 at temperature 70, 80 and 90 ºC and time duration of 30, 75 and 120 min), and superheated solvent extraction (at temperature 130, 145 and 160 ºC, time duration of 10, 20 and 30 minutes and solvent ratio of water/ethanol 60:40, 80:20 and 100:0) and the antimicrobial activity of extracts against some of food microorganisms using minimum inhibition concentration and minimum bactericidal concentration methods were measured. In both extraction methods, the MIC of most microorganisms was 0.5 mg/ml, while the MBC, depending on the microorganism, was between 5 and 500 mg/ ml. In the conventional solvent extraction procedure, the treatment was carried out at a temperature of 80 ° C, 75 minutes, and equal ratio of two solvents, and in superheated solvent extraction method, treatment including temperature of 160 ° C, time of 20 minutes, and water/ Ethanol ratio of 80 to 20 showed the most antimicrobial activity. Based on the results, it can be stated that the type of plant extraction method has a significant effect on inhibiting or preventing the growth of food borne or spoilage microorganisms, and if any of the plant extraction technique are optimized, they can be better used to increase the shelf life of food.

کلیدواژه‌ها English

Minimum inhibitory concentration (MIC)
Minimum bactericidal concentration (MBC)
Salvia
superheated solvent extraction
1. Aliakbarian, B., Fathi, A., Perego, P., Dehghani, F. (2012). Extraction of antioxidant from winery wastes using subcritical water. The Journal of Subcritical Fluids, 65: 18- 24.
2. Silvan, M., Mingo, E., Hidalgo, M., Pascual-Teresa, S., Carrascosa, A. V., Martinez-Rodriguez, A. J. (2013). Antibacterial activity of a grape seed extract and its fractions against Campylobacter spp. Food Control, 29: 25- 31.
3. Perumalla, A., Hettiarachchy, N. S. (2011). Green tea and grape seed extracts -Potential applications in food safety and quality. Food Research International, 44: 827- 839.
4. Heywood, V. H. (1985). Flowering Plants of the World. Ed. Dod, B., Croom Helm Pub.239.
5. Rechinger, K. H. (1982). Flora Iranica. N.150, Academishe Druk.u.Verlag sustalt Gratz.
6. Hosseinzadeh, H., Sadeghnia, H. R., Imenshahidi, M., Fazli Bazzaz, B. S (2009). Review of the Pharmacological and Toxicological Effects of Salvia leriifolia. Iranian Journaln of Basic Medical Science, 12: 1-8.
7. Baghi, N. (1996). Antimicrobial effects of Salvia. Thesis of Ph.D. in Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences.
8. Jabarzada, M. (1999). Antimicrobial properties of root and plant extracts of Norouzk. Thesis for Ph.D. in Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences.
9. Modatter, M., Abrishamchi, P. (2008) Effect of harvesting time on antibacterial activity of Salvia leriifolia leaf. Scientific Journal of Tarbiat Moallem University, 8: 343-356.
10. Modarres, M., Abrishamchi, P. (2009). Antibacterial activity of Salvia leriifolia roots at different stages of growth. Journal of Biology, 23: 717-707.
11. Sagdic. O, Ozturk. I, Kisi. O. (2012). Modeling antimicrobial effect of different grape pomace and extracts on S. aureus and E. coli in vegetable soup using artificial neural network and fuzzy logic system. Expert Systems with Applications, 39: 6792- 6798.
12. Hayrapetyan, H., Hazeleger, W. C., Beumer, R. R. (2012). Inhibition of Listeria monocytogenes by ‎pomegranate (Punica granatum) peel extract in meat paté at different temperatures. Food ‎Control, 23: 66-72.‎
13. Adamez, J., Samino, E. G., Sanchez, E. V., Gomez, D. G. (2012). In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control, 24: 136- 141. Corrales, M., Garcia, A., Butz, P., Tauscher, B. (2009). Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. Journal of Food Engineering, 90: 415–421.
14. Martin, J., Porto, E., Correa, C., Alencar, M., Gloria, E., Cabral, I., Aquino, L. (2012). Antimicrobial potential and chemical composition of agro-industrial wastes. Journal of Natural Products, 5: 27- 3612.
15. Chan, C. H., Yusoff, R., Ngoh, G. C. (2013). Modeling and kinetics study of conventional ‎and assisted bath solvent extraction. Chemical Engineering Research and Design, 92(6): 1169-1186.
16. Corrales, M., Garcia, A., Butz, P., Tauscher, B. (2009). Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. Journal of Food Engineering, 90: 415–421.
17. Wijngaard, H., Hossain, M. B., Rai, D. K., Brunton, N. (2012). Techniques to extract bioactive compounds from food by-products of plant origin. Food Research International, 46: 505- 513.
18. Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K.M., Mohamed, A., Sahena, F., Jahurul, M. H. A., Ghafoor, K., Norulaini, N. A. N., Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: a review. Journal of Food Engineering, 117: 426-436.
19. Institute of Standards and Industrial Research of Iran. (2015). Measuring the moisture content of sugar by weight loss due to drying. National Iranian Standard, No. 5194.
20. Institute of Standards and Industrial Research of Iran. (2010). Cereals and its products, Humidity measurement method, Reference method. National Iranian Standard, No. 2075.
21. Marino, C., Rivas-Gonzalo, C., Ibanez, E., Moreno, C. (2006). Recovery of catechins and proanthocyanidins from winery by-products using subcritical water extraction. Analytica Chimica Acta, 563: 44- 50.
20. Iturriaga, L., Olabarrieta, I., Martinez de Maranon, I. (2012). Antimicrobial assays of natural extracts and their inhibitory effect against Listeria innocua and fish spoilage bacteria, after incorporation into biopolymer edible films. International Journal of Food Microbiology, 158: 58–64.
21. Klančnik, A., Piskernik, S., Jeršek, B., Smole Možina S. (2010). Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. Journal of Microbiological Methods. 81: 121-126.
22. Ellof, J. N. (1998). A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Medica, 64: 711–713.
23. Duffy, C. F., Power, R. F. (2001). Antioxidant and antimicrobial properties of ‎some Chinese plant extracts. Journal of International Antimic, 17: 527- 529.‎
24. Fernandes, F. H. A., Santana, C. P., Santos, R. L., Lidiane P. Correia, L. P., Conceicao, M. M., Macedo, R. O., Medeiros, A. C. D. (2013). Thermal characterization of dried extract of medicinal plant by DSC and analytical techniques, Journal of Thermal Analysis and Calorimetry, 113 (2): 443–447.
25. Endo, E. H., Cortez, D., Nakamura, T., Nakamura, C., Filho, B. (2010). Potent antifungal activity of extracts and pure compound isolated from pomegranate peels and synergism with fluconazole against Candidaalbicans. Research in Microbiology, 161: 534-540.
26. Qu, W., Li, P., Hong, J., Liu, Z., Chen, Y., Breksa, A. P., Pan, Z. (2014). Thermal stability of liquid antioxidative extracts from pomegranate peel. Journal of Science Food and Agriculture, 94: 1005- 1012.
28. Ismail, T., Sestili, P., Akhtar, S. (2012). Pomegranate peel and fruit extracts: A review of potential anti-inflammatory and anti-infective effects. Journal of Ethnopharmacology, 143: 397- 405.
29. Furneri, P., Marino, M., Saija, A., Uccella, A., Bisignano, N. (2002). In vitro antimycoplasmal activity of oleuropein. Antimicrobial Agents, 20: 293-296.
31. Porto. C., Porretto. E., Decorti. D. (2013). Comparison of ultrasound-assisted ‎extraction with conventional extraction methods of oil and polyphenols from grape (Vitis ‎vinifera L.) seeds. Ultrasonics Sonochemistry, 20: 1076- 1080.‎
32. Shang, Y. F., Kim, S. M., Um, B. H. (2014). Optimisation of pressurised liquid extraction of antioxidants ‎from black bamboo leaves. Food Chemistry, 154: 164–170.
33. Dormaz, G., Gokmen, V. (2011). Changes in oxidative stability, antioxidant capacity and phytochemical composition of Pistacia terebinthus oil with roasting. Food Chemistry, 128(2): 410-414.
34. Plama, M., Pinerio, Z., Barroso, C. (2001). Stability of phenolic compounds during extraction with superheated solvents. Chromatography, 921: 169-174.
35. He, L., Xu, H., Liu, X., He, W., Yuan, F., Hou, Z., Gao, Y. (2011). Identufication of phenolic compounds from pomegranate seed residues and investigation in to their antioxidant capacities by HPLC assay. Food Research International, 44(5): 1161-1167.
36. Wang, Y., He, H., Yang, J., De, Y., Hao, X. (2008). New monoterpenoid coumarins from Clausena anisum-olens. Journal of Molecules, 13: 931- 937.
37. Oliveira, D., Salvador, A., Smânia, A., Smânia, Jr.E., Maraschin, M., Ferreira, S. (2013). Antimicrobial activity ‎and composition profile grape pomace extracts obtained by supercritical fluid. Journal of ‎Biotechnology, 164: 423- 432.‎‎
38. Mehraban, A., Edalatian dovan, M. R., Haddad khodaparast, M. H. Mehraban Sang Atash, M. (2017). Antimicrobial effect of the aqueous, ethanolic and hydroalcoholic extracts of Salvia chorasanica (Salvia chorasanica) on some bacteria causing corrosivity and poisoning. Journal of Food Science and Technology, 14 (66): 227-217.
39. Ghasemi, A., Golshahi, H., Mehranzadeh, A. (2011). Antimicrobial effect of alcoholic extract of basil (Ocimum basilicum) on Escherichia coli, Staphylococcus aureus and Bacillus subtilis. First International Congress of Medical Bacteriology, Tabriz University of Medical Sciences and Health Services
40. Nuamsetti, T., Dechayuenyong, P., Tantipailbulvut, S. (2012). Antibacterial activity of pomegranate fruit peels and arils, ScienceAsia, 38: 319-322.